06.09.2021 Views

Linear Algebra, 2020a

Linear Algebra, 2020a

Linear Algebra, 2020a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Section III. Basis and Dimension 149<br />

4.16 Example In R 2 the x-axis and the y-axis are complements, that is, R 2 =<br />

x-axis ⊕ y-axis. This points out that subspace complement is slightly different<br />

than set complement; the x and y axes are not set complements because their<br />

intersection is not the empty set.<br />

A space can have more than one pair of complementary subspaces; another<br />

pair for R 2 are the subspaces consisting of the lines y = x and y = 2x.<br />

4.17 Example In the space F = {a cos θ + b sin θ | a, b ∈ R}, the subspaces W 1 =<br />

{a cos θ | a ∈ R} and W 2 = {b sin θ | b ∈ R} are complements. The prior example<br />

noted that a space can be decomposed into more than one pair of complements.<br />

In addition note that F can has more than one pair of complementary<br />

subspaces where the first in the pair is W 1 — another complement of W 1 is<br />

W 3 = {b sin θ + b cos θ | b ∈ R}.<br />

4.18 Example In R 3 , the xy-plane and the yz-planes are not complements, which<br />

is the point of the discussion following Example 4.4. One complement of the<br />

xy-plane is the z-axis.<br />

Here is a natural question that arises from Lemma 4.15: for k>2is the<br />

simple sum V = W 1 + ···+ W k also a direct sum if and only if the intersection<br />

of the subspaces is trivial?<br />

4.19 Example If there are more than two subspaces then having a trivial intersection<br />

is not enough to guarantee unique decomposition (i.e., is not enough to<br />

ensure that the spaces are independent). In R 3 ,letW 1 be the x-axis, let W 2 be<br />

the y-axis, and let W 3 be this.<br />

⎛<br />

⎜<br />

q<br />

⎞<br />

⎟<br />

W 3 = { ⎝q⎠ | q, r ∈ R}<br />

r<br />

The check that R 3 = W 1 + W 2 + W 3 is easy. The intersection W 1 ∩ W 2 ∩ W 3 is<br />

trivial, but decompositions aren’t unique.<br />

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞<br />

x<br />

⎜ ⎟ ⎜<br />

0 0<br />

⎟ ⎜ ⎟ ⎜<br />

x ⎟<br />

⎝y⎠ = ⎝0⎠ + ⎝y − x⎠ + ⎝x⎠ =<br />

z 0 0 z<br />

⎜<br />

⎝<br />

x − y<br />

0<br />

0<br />

⎟<br />

⎠ +<br />

⎜<br />

0 ⎟ ⎜<br />

y ⎟<br />

⎝0⎠ + ⎝y⎠<br />

0 z<br />

(This example also shows that this requirement is also not enough: that all<br />

pairwise intersections of the subspaces be trivial. See Exercise 30.)<br />

In this subsection we have seen two ways to regard a space as built up from<br />

component parts. Both are useful; in particular we will use the direct sum<br />

definition at the end of the Chapter Five.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!