12.07.2015 Views

Ecuaciones Integrales Lineales de Volterra-Dushnik en Espacios de ...

Ecuaciones Integrales Lineales de Volterra-Dushnik en Espacios de ...

Ecuaciones Integrales Lineales de Volterra-Dushnik en Espacios de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Capítulo 4. Algunas aplicaciones <strong>de</strong> la ecuación integral lineal <strong>de</strong> <strong>Volterra</strong>-<strong>Dushnik</strong> 105En virtud <strong>de</strong> la <strong>de</strong>finición <strong>de</strong>l operador A h ,∫∫[T(h) − I]A h T(s)xds =h[0,t]= 1 h∫[0,t]T(s)xdsT(h)T(s)xds − 1 h∫T(s)xds= 1 h[0,t]∫[0,t]T(s + h)xds − 1 ∫T(s)xdsh= 1 h[0,t]∫T(s)xds − 1 h∫[0,t]T(s)xds= 1 h[h,t+h]∫T(s)xds − 1 h[0,t]∫T(s)xds.[t,t+h][0,h]Luego,A h∫T(s)xds = 1 h∫T(s)xds − 1 h∫T(s)xds. (4.23)[0,t][t,t+h][0,h]Tomando el límite, cuando h → 0 + , <strong>en</strong> ambos lados <strong>de</strong> (4.23)∫lím Ah→0 + h[0,t]1T(s)xds = límh→0 + h1= límh→0 + h∫[t,t+h]∫[t,t+h]1T(s)xds − límh→0 + h∫[0,h]T(s)xdsT(s)xds − x. (por el Teorema 4.2.2)Así,Afirmación 1∫lím Ah→0 + h[0,t]1límh→0 + h1T(s)xds = límh→0 + h∫[t,t+h]∫[t,t+h]T(s)xds = T(t)x t ≥ 0.T(s)xds − x. (4.24)En efecto: Por el Teorema 4.2.1, parte b), resulta que líms→tT(s)x = T(t)x. Esto es, paratodo ǫ > 0, existe δ > 0 tal que |s − t| < δ implica que ‖T(s)x − T(t)x‖ < ǫ.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!