12.07.2015 Views

Ecuaciones Integrales Lineales de Volterra-Dushnik en Espacios de ...

Ecuaciones Integrales Lineales de Volterra-Dushnik en Espacios de ...

Ecuaciones Integrales Lineales de Volterra-Dushnik en Espacios de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Capítulo 3. Exist<strong>en</strong>cia y unicidad <strong>de</strong> la ecuación integral lineal <strong>de</strong> <strong>Volterra</strong>-<strong>Dushnik</strong> 80<strong>de</strong> esto, y <strong>de</strong> la ecuación (3.19), resultadon<strong>de</strong> F (n)Kx u= (I + F K) −1 [u], (3.20)∞∑x u(t) = (−1) (n) F (n) [u](t),Kn=0x u(t) = u(t) +∞∑n=1(−1) (n) F (n)K[u](t), (3.21)es compacto (ver J. Quintero [16] Teorema 2.3.5), está <strong>de</strong>finido por∫F (n) [u](t) = K[a,t]d s K (n) (t, s)u(s) = FK[u](t). (3.22)(n)Tal operador está asociado a K (n) ∈ G σ o · SV u (D; L(X)), don<strong>de</strong>⎧⎪⎨⎪⎩K (1) (t, s) = K(t, s),K (n) (t, s) =∫[s,t]d σ K(t, σ) ◦ K (n−1) (σ, s) ∀ n ≥ 2.Luego, sustituy<strong>en</strong>do (3.22) <strong>en</strong> (3.15), la solución po<strong>de</strong>mos escribirla <strong>en</strong> la formax u(t) = u(t) +[a,t]∞∑∫(−1) (n)n=1[a,t]d s K (n) (t, s)u(s).Ahora, por el Teorema 2.1.4, parte ii),∫ [ ∞]∑x u(t) = u(t) − d s (−1) (n−1) K (n) (t, s) u(s), (3.23)y la función R(t, s) está <strong>de</strong>terminada porR(t, s) =n=1∞∑(−1) (n) K (n+1) (t, s). (3.24)n=0La cual llamaremos Resolv<strong>en</strong>te <strong>de</strong> la ecuación integral (K), si<strong>en</strong>do la serie <strong>en</strong> (3.24)converg<strong>en</strong>te <strong>en</strong> G σ 0 · SV u (D; L(X)).Sustituy<strong>en</strong>do la resolv<strong>en</strong>te <strong>de</strong> (3.24) <strong>en</strong> (3.23),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!