10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Having fixed a smooth point P ∈ C there exists a flat family U <strong>on</strong> C × C such<br />

that the fiber <str<strong>on</strong>g>of</str<strong>on</strong>g> U over a point Q ∈ C is O(P ) ⊗ IQ. Therefore the fibers <str<strong>on</strong>g>of</str<strong>on</strong>g> U<br />

are semistable for all Q, and are stable for all Q in cases (0), (I1) and (II), while<br />

in case (I2) they are stable <strong>on</strong>ly when Q is a smooth point in the same comp<strong>on</strong>ent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> C as P .<br />

6.4 The Relative Jacobian<br />

In this secti<strong>on</strong> we c<strong>on</strong>sider the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structing the relative Jacobian <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

elliptic fibrati<strong>on</strong> X → S: we want it to be a projective, flat morphism J → S,<br />

such that at least over the smooth part S \ ∆, it agrees with the relative Jacobian<br />

c<strong>on</strong>structed in Chapter 4. Furthermore, we’d like the c<strong>on</strong>structi<strong>on</strong> to be in a<br />

certain sense natural.<br />

A good framework for defining the relative Jacobian is that <str<strong>on</strong>g>of</str<strong>on</strong>g> relative moduli<br />

spaces. Indeed, given a projective, flat morphism f : X → S, a relatively ample line<br />

bundle O(1) <strong>on</strong> X, and a Hilbert polynomial P , <strong>on</strong>e can c<strong>on</strong>sider M = MX/S(P ).<br />

It comes with a natural flat, projective map M → S, and the fiber over each point<br />

s ∈ S, Ms, is naturally isomorphic to the (absolute) moduli space <str<strong>on</strong>g>of</str<strong>on</strong>g> semistable<br />

<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hilbert polynomial P <strong>on</strong> the fiber Xs, with the polarizati<strong>on</strong> given by<br />

O(1). (In fact, MX/S(P ) satisfies a certain str<strong>on</strong>ger corepresentability property.<br />

See Theorem 3.3.1.)<br />

Therefore c<strong>on</strong>sider the following definiti<strong>on</strong>:<br />

Definiti<strong>on</strong> 6.4.1. Let X → S be a generic elliptic fibrati<strong>on</strong>, and let OX(1) be a<br />

line bundle <strong>on</strong> X ample relative to S. Fix a point s ∈ S, and let P be the Hilbert<br />

polynomial <str<strong>on</strong>g>of</str<strong>on</strong>g> OXs <strong>on</strong> Xs, with respect to the polarizati<strong>on</strong> given by OX(1)|Xs. (P<br />

is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> s ∈ S, by [22, III, 9.9].) C<strong>on</strong>sider the relative<br />

moduli space M = MX/S(P ) → S <str<strong>on</strong>g>of</str<strong>on</strong>g> semistable <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hilbert polynomial<br />

P <strong>on</strong> the fibers <str<strong>on</strong>g>of</str<strong>on</strong>g> X/S. By the universal property <str<strong>on</strong>g>of</str<strong>on</strong>g> M, there exists a natural<br />

secti<strong>on</strong> S → M which takes s ∈ S to the point [OXs], representing the sheaf OXs<br />

<strong>on</strong> Xs. Then there exists a unique comp<strong>on</strong>ent J <str<strong>on</strong>g>of</str<strong>on</strong>g> M that c<strong>on</strong>tains the image <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this secti<strong>on</strong>. J/S is defined to be the relative Jacobian <str<strong>on</strong>g>of</str<strong>on</strong>g> X/S.<br />

There is <strong>on</strong>e thing that requires pro<str<strong>on</strong>g>of</str<strong>on</strong>g> here: the fact that the secti<strong>on</strong> lies in a<br />

unique comp<strong>on</strong>ent. Let t : S → M denote the secti<strong>on</strong>. Since S is c<strong>on</strong>nected, the<br />

<strong>on</strong>ly thing that needs to be proved is that for some s ∈ S, t(s) is a smooth point<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M (in this case, t(s) lies in a unique comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> M, and we’re d<strong>on</strong>e). But it<br />

is easy to see that if s ∈ S \ ∆ (which is an open set in S), M is smooth over a<br />

neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> s, so we’re d<strong>on</strong>e.<br />

Next, we study the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the relative Jacobian: the map J → S is<br />

obviously a flat, projective morphism. Since the fiber Js over a point s ∈ S is<br />

isomorphic to the absolute moduli space MXs(P ), we see that J is an elliptic<br />

fibrati<strong>on</strong>. (By the results in Secti<strong>on</strong> 6.3, Js is an elliptic curve for s ∈ S \ ∆.)<br />

99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!