10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Applying (ρ −1<br />

i )∗ we get<br />

and thus<br />

(ρ −1<br />

i )∗ O X k ij (ti − tj) = OXij (ρi(ti) − ρi(tj))<br />

= OXij (si − τij(sj))<br />

= OXij (si)<br />

−1<br />

⊗ OXij (τij(sj))<br />

= OXij (si) ⊗ τ ∗ jiOXij (−sj)<br />

= OXij (si) ⊗ OXij (−sj) ⊗ L −1<br />

ji<br />

= OXij (si) ⊗ OXij (−sj) ⊗ OXij ((k − 1)(si − sj))<br />

= OXij (k(si − sj)),<br />

ϕ ∗ (µ k i ) ∗ O X k ij (ti − tj) = µ ∗ i (ρ −1<br />

i )∗ O X k ij (ti − tj)<br />

= µ ∗ i OXij (k(si − sj)),<br />

which shows that if X is represented by α ∈ XS(JX), then X k is represented by<br />

(ϕ −1 ) ∗ α k in XS(J X k).<br />

The result about the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a universal sheaf is known (see, for example,<br />

[6]). But here is a quick pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a universal sheaf when<br />

(k, n) = 1: we <strong>on</strong>ly need to show that we can twist the universal <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> described<br />

in the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the pro<str<strong>on</strong>g>of</str<strong>on</strong>g> in a way that would make them glue. A computati<strong>on</strong><br />

similar to the <strong>on</strong>e d<strong>on</strong>e in Secti<strong>on</strong> 4.3 shows that<br />

Mij = Uj|Pij<br />

⊗ U −1<br />

i |Pij<br />

is equal to the pull-back <str<strong>on</strong>g>of</str<strong>on</strong>g> a line bundle Fij from X k ij, and Fij can be taken to<br />

be <str<strong>on</strong>g>of</str<strong>on</strong>g> the form<br />

ρ ∗ i L −1<br />

ij = ρ∗ i OXij ((k − 1)(sj − si)).<br />

Now let S be a line bundle <strong>on</strong> X, <str<strong>on</strong>g>of</str<strong>on</strong>g> fiber degree n (such a line bundle exists<br />

globally <strong>on</strong> X, by the comments at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the previous secti<strong>on</strong>), and c<strong>on</strong>sider<br />

). We have<br />

the line bundles S ′<br />

i = ρ ∗ i Si (where Si = S |Xi<br />

(ρ −1<br />

j )∗ (S ′<br />

j ⊗ (S ′<br />

i ) −1 ) = Sj ⊗ τ ∗ ijS −1<br />

i<br />

= Sj ⊗ S −1<br />

i<br />

⊗−n<br />

⊗ L<br />

= OXij (−n(k − 1)(si − sj)).<br />

Therefore, c<strong>on</strong>sidering the collecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> line bundles {O X k i (ti)} and {S ′<br />

i }, we<br />

see that their coboundaries are {O(k(si −sj))} and {O(−n(k −1)(si −sj))} (where<br />

we have omitted the subscript Xij and the pull-backs by isomorphisms to X k<br />

because these do not matter, since we are dealing with line bundles <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 0).<br />

Since k and −n(k − 1) are coprime, we can obtain any multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> {O(si − sj)} out<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> them, in particular we can c<strong>on</strong>struct {O((k − 1)(sj − si))}, which we have seen<br />

is the obstructi<strong>on</strong> to gluing the Ui’s together. Therefore this obstructi<strong>on</strong> is trivial,<br />

and hence the Ui’s can be glued to form a global universal sheaf, thus finishing<br />

the pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

ij<br />

60

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!