10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

allow us to get X; however, finding v seems a more difficult problem.<br />

The last secti<strong>on</strong> deals with the relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the previous secti<strong>on</strong>s<br />

with the topic <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>derived</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g>. This provides an insight into<br />

why we can <strong>on</strong>ly get a hold <str<strong>on</strong>g>of</str<strong>on</strong>g> the transcendental lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> X in generalizing Ogg-<br />

Shafarevich theory. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> this analysis we also observe the following<br />

curious phenomen<strong>on</strong>: when we can find X and v, X <strong>on</strong>ly depends <strong>on</strong> the cyclic<br />

subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> Br(M) generated by α. This allows us to infer that in some cases <strong>on</strong>e<br />

has<br />

D b coh(M, α) = D b coh(M, α k )<br />

for (k, ord(α)) = 1, a rather striking applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the theoretical results <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

previous chapters. In the next chapter we’ll see a similar result for elliptic Calabi-<br />

Yau threefolds.<br />

5.1 General Facts<br />

The main results about K3 surfaces: the Torelli theorem, Mukai’s calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

moduli spaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> K3’s, Orlov’s characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>derived</str<strong>on</strong>g> equivalences<br />

for K3’s – are all presented in this secti<strong>on</strong>, and put in the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> the results in<br />

the first part.<br />

The Torelli Theorem<br />

Let’s fix notati<strong>on</strong>: let X be a complex K3 surface, i.e., a complex manifold <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

complex dimensi<strong>on</strong> 2, having trivial can<strong>on</strong>ical class (KX = 0) and being simply<br />

c<strong>on</strong>nected (equivalent, using Hodge theory, to having H 1 (X, OX) = 0).<br />

We have H 2 (X, Z) = Z 22 , and c<strong>on</strong>sidering this group with the intersecti<strong>on</strong><br />

pairing we obtain a lattice which is isomorphic to<br />

LK3 = (E8) ⊕2 ⊕ (U(1)) ⊕3 .<br />

Inside the H 2 (X, Z) lattice there are two natural sublattices, the Nér<strong>on</strong>-Severi<br />

sublattice <str<strong>on</strong>g>of</str<strong>on</strong>g> X, NS(X), (c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> first Chern classes <str<strong>on</strong>g>of</str<strong>on</strong>g> holomorphic vector<br />

bundles), and its orthog<strong>on</strong>al complement, the transcendental lattice TX =<br />

NS(X) ⊥ . Both these lattices are primitive sublattices <str<strong>on</strong>g>of</str<strong>on</strong>g> H 2 (X, Z), but may be<br />

n<strong>on</strong>-unimodular.<br />

The complex structure <str<strong>on</strong>g>of</str<strong>on</strong>g> X is reflected in its Hodge decompositi<strong>on</strong><br />

H 2 (X, C) = H 2,0 (X) ⊕ H 1,1 (X) ⊕ H 0,2 (X).<br />

We have dim H 2,0 (X) = 1, so in order to specify this decompositi<strong>on</strong>, it is enough<br />

to specify a <strong>on</strong>e-dimensi<strong>on</strong>al complex subspace π ⊆ H 2 (X, C) (called the period <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

X): indeed, <strong>on</strong>e can take H 2,0 (X) to be π, H 0,2 to be the complex c<strong>on</strong>jugate π <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

π, and H 1,1 to be the orthog<strong>on</strong>al (with respect to the intersecti<strong>on</strong> pairing) to the<br />

span <str<strong>on</strong>g>of</str<strong>on</strong>g> π and π. The complex subspace π satisfies the following extra property: if<br />

v ∈ π is a n<strong>on</strong>-zero vector, we have v.v = 0 and v.v > 0.<br />

63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!