10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Lemma 1.2.3. Let α ∈ Č2 (X, O ∗ X ), and let U′ be a refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> an open cover U<br />

<strong>on</strong> which α can be represented. Then we have an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g><br />

Mod(X, α, U) ∼ = Mod(X, α, U ′ ).<br />

Before we prove this result, it is useful to recall the following result <strong>on</strong> gluing<br />

<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> in the étale topology.<br />

Lemma 1.2.4 (Gluing Sheaves in the Étale Topology). Let X be a scheme,<br />

endowed with the étale topology, let U = {ρi : Ui → X} be an open cover <str<strong>on</strong>g>of</str<strong>on</strong>g> X, and<br />

suppose we are given for each i a sheaf Fi <strong>on</strong> Ui, and for each i, j an isomorphism<br />

such that for each i, j, k,<br />

ϕij : (p ij<br />

j )∗ Fj|Ui×XUj<br />

→ (pij<br />

i )∗ Fi|Ui×XUj<br />

(p ijk<br />

ij )∗ (ϕij) ◦ (p ijk<br />

jk )∗ (ϕjk) ◦ (p ijk<br />

ki )∗ (ϕki) = id (p ijk<br />

i ) ∗ Fi ,<br />

where p ijk<br />

ij is the projecti<strong>on</strong> from Ui ×X UJ ×X Uk to Ui ×X Uj, and similarly for<br />

the other projecti<strong>on</strong>s. Then there exists a unique sheaf F <strong>on</strong> X, together with<br />

isomorphisms ψi : ρ ∗ i F ∼ → Fi such that for each i, j,<br />

(p ij<br />

i )∗ (ψi) = ϕij ◦ (p ij<br />

j )∗ (ψj)<br />

<strong>on</strong> Ui ×X Uj. We say loosely that F is obtained by gluing the <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> Fi via the<br />

isomorphisms ϕij.<br />

Remark 1.2.5. We have phrased this lemma using pull-backs instead <str<strong>on</strong>g>of</str<strong>on</strong>g> restricti<strong>on</strong><br />

maps in order to make apparent its relati<strong>on</strong>ship to the standard lemma in descent<br />

theory (see, for example, [30, I.2.22]). From here <strong>on</strong>, however, we’ll revert to the<br />

more c<strong>on</strong>venient notati<strong>on</strong> where if F is a sheaf <strong>on</strong> a space X, and ϕ : U → X is<br />

an étale open set, we write F |U for ϕ ∗ F , and if f : F → G is a map <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g><br />

<strong>on</strong> X, we write f|U for ϕ ∗ (f). See also the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a presheaf in [30, p.47].<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (We <strong>on</strong>ly sketch a pro<str<strong>on</strong>g>of</str<strong>on</strong>g>, since this is well-known. For a topological space,<br />

see [22, Ex. II.1.22].) Let U → X be an open set in the étale topology. Define<br />

F (U) = {(si) ∈ <br />

Fi(Ui ×X U) | ϕij(sj|Ui×XUj×XU) = si|Ui×XUj×XU for all i, j},<br />

and define ψi by<br />

i<br />

ψi(U)((sj)j) = si ∈ Fi(Ui ×X U).<br />

It is now <strong>on</strong>ly a tedious check to see that F is a sheaf and that the collecti<strong>on</strong><br />

{ψi} satisfies the required properties.<br />

The important thing to note, however, is that we have not made any choices<br />

here, and therefore this c<strong>on</strong>structi<strong>on</strong> is entirely functorial.<br />

15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!