10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Definiti<strong>on</strong> 6.1.2. A projective morphism f : X → S <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic varieties or<br />

analytic spaces is called an elliptic fibrati<strong>on</strong> if its generic fiber E is a regular curve<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> genus <strong>on</strong>e and all fibers are geometrically c<strong>on</strong>nected. If X is a Calabi-Yau<br />

threefold, then f is called an elliptic Calabi-Yau threefold.<br />

Remark 6.1.3. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the time we’ll abuse the notati<strong>on</strong>, by saying “let X be an<br />

elliptic Calabi-Yau threefold.” By this we mean “let X be a Calabi-Yau threefold,<br />

and let f : X → S be an elliptic fibrati<strong>on</strong> <strong>on</strong> X.”<br />

Definiti<strong>on</strong> 6.1.4. Let f : X → S be an elliptic fibrati<strong>on</strong>. The locus ∆ ⊆ S <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

points s ∈ S such that f is not smooth at some point x ∈ X with f(x) = s, is<br />

called the discriminant locus <str<strong>on</strong>g>of</str<strong>on</strong>g> f. It is a Zariski closed subset <str<strong>on</strong>g>of</str<strong>on</strong>g> S. The closed<br />

subset <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆<br />

∆ m = {s ∈ S | f is not smooth at any x ∈ f −1 (s)}<br />

is called the multiple locus <str<strong>on</strong>g>of</str<strong>on</strong>g> f. A fiber over a point s ∈ ∆ m is called a multiple<br />

fiber.<br />

We will <strong>on</strong>ly be interested in studying elliptic fibrati<strong>on</strong>s without multiple fibers,<br />

so from now <strong>on</strong> we make the assumpti<strong>on</strong> that ∆ m = ∅.<br />

Definiti<strong>on</strong> 6.1.5. A secti<strong>on</strong> (resp. a rati<strong>on</strong>al secti<strong>on</strong>) <str<strong>on</strong>g>of</str<strong>on</strong>g> an elliptic fibrati<strong>on</strong> f :<br />

X → S is a closed subscheme Y <str<strong>on</strong>g>of</str<strong>on</strong>g> X for which the restricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> f to Y is an<br />

isomorphism (resp. a birati<strong>on</strong>al morphism). A degree n multisecti<strong>on</strong> (or an nsecti<strong>on</strong>)<br />

is a closed subscheme Y <str<strong>on</strong>g>of</str<strong>on</strong>g> X such that the restricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> f to Y is a finite<br />

morphism <str<strong>on</strong>g>of</str<strong>on</strong>g> degree n. A rati<strong>on</strong>al degree n multisecti<strong>on</strong> is a closed subscheme Y<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> X such that the restricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> f to Y is generically finite <str<strong>on</strong>g>of</str<strong>on</strong>g> degree n.<br />

When working in the algebraic category, it is well-known that any elliptic fibrati<strong>on</strong><br />

has a rati<strong>on</strong>al multisecti<strong>on</strong>. In the analytic category this does not necessarily<br />

hold true any more, but we will always assume not <strong>on</strong>ly the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a rati<strong>on</strong>al<br />

multisecti<strong>on</strong>, but even more: that the elliptic fibrati<strong>on</strong>s under c<strong>on</strong>siderati<strong>on</strong> have<br />

multisecti<strong>on</strong>s (not <strong>on</strong>ly rati<strong>on</strong>al).<br />

Definiti<strong>on</strong> 6.1.6. For the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter, define a generic elliptic Calabi-Yau<br />

threefold to be an elliptic threefold f : X → S, with X and S smooth algebraic<br />

varieties over C or complex <strong>manifolds</strong>, X Calabi-Yau, and satisfying the following<br />

extra properties:<br />

1. f is flat (i.e. all fibers are 1-dimensi<strong>on</strong>al);<br />

2. f does not have any multiple fibers;<br />

3. f admits a multisecti<strong>on</strong>;<br />

4. the discriminant locus ∆ is a reduced, irreducible curve in S, having <strong>on</strong>ly<br />

nodes and cusps as singularities;<br />

87

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!