10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Li = ρ∗ i L −1 |Xi . Then we have<br />

Li ⊗ L −1<br />

j<br />

= ρ∗ i L −1 ⊗ ρ ∗ jL<br />

= ρ ∗ i (L −1 ⊗ (ρ −1<br />

i )∗ ρ ∗ jL )<br />

= ρ ∗ i (L −1 ⊗ τ ∗ jiL )<br />

= ρ ∗ i (L −1 ⊗ L ⊗ L ⊗n<br />

τji )<br />

= ρ ∗ i (L −1 ⊗ L ⊗ L ⊗n<br />

ji )<br />

= ρ ∗ i OX(si − sj) ⊗n<br />

= F ⊗n<br />

ij ,<br />

where we have used the comments in Secti<strong>on</strong> 4.2 regarding translati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> line<br />

bundles <str<strong>on</strong>g>of</str<strong>on</strong>g> various degrees. (Note that we have used the fact that deg L = n.)<br />

Remark 4.4.3. In fact, using some slightly more detailed informati<strong>on</strong> that <strong>on</strong>e can<br />

get from Ogg-Shafarevich theory it can be proven that the order <str<strong>on</strong>g>of</str<strong>on</strong>g> αX in XS(J)<br />

is precisely n.<br />

4.5 Other Fibrati<strong>on</strong>s<br />

The Jacobian fibrati<strong>on</strong> that we c<strong>on</strong>sidered in the previous secti<strong>on</strong>s is not the <strong>on</strong>ly<br />

<strong>on</strong>e we can naturally c<strong>on</strong>struct from the original fibrati<strong>on</strong> X → S. In a certain<br />

sense the Jacobian is the comm<strong>on</strong> denominator <str<strong>on</strong>g>of</str<strong>on</strong>g> the other <strong>on</strong>es, but these present<br />

some interest as well, and we study them briefly here.<br />

We keep the notati<strong>on</strong> from the previous secti<strong>on</strong>s.<br />

Definiti<strong>on</strong> 4.5.1. For any integer k, let Y → S be the relative moduli space <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

semistable <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> rank 1, degree k <strong>on</strong> the fibers <str<strong>on</strong>g>of</str<strong>on</strong>g> X → S. We call Y → S the<br />

k-th <str<strong>on</strong>g>twisted</str<strong>on</strong>g> power <str<strong>on</strong>g>of</str<strong>on</strong>g> X → S, and denote it by X k → S.<br />

Theorem 4.5.2. For any integer k, X k → S is a smooth elliptic fibrati<strong>on</strong> whose<br />

relative Jacobian is isomorphic in a natural way to the relative Jacobian J → S <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the initial fibrati<strong>on</strong> X → S. If α ∈ XS(J) is the element <str<strong>on</strong>g>of</str<strong>on</strong>g> the Tate-Shafarevich<br />

group representing X → S, then X k → S is represented by α k . C<strong>on</strong>sequently the<br />

fibrati<strong>on</strong> (X k ) k′<br />

→ S is isomorphic to X kk′<br />

XS(J). A universal sheaf exists <strong>on</strong> X ×S X k if and <strong>on</strong>ly if<br />

(k, n) = 1,<br />

57<br />

→ S. Let n denote the order <str<strong>on</strong>g>of</str<strong>on</strong>g> α in<br />

and in this case X can be viewed as a moduli space <strong>on</strong> X k (we have<br />

X ∼ = (X k ) k′<br />

as fibrati<strong>on</strong>s over S, where k ′ is any integer such that kk ′ = 1 mod n).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!