10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. For the first statement, see [32, Remark A.7] and the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>twisted</str<strong>on</strong>g><br />

<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> in the first chapter <str<strong>on</strong>g>of</str<strong>on</strong>g> this work. The other statements are [32, 6.4]. Note<br />

that n is defined in a slightly different fashi<strong>on</strong> than in [32, 6.4], but this is the correct<br />

versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it: otherwise <strong>on</strong>e could have, for example, a Mukai vector v = (r, l, s)<br />

for which gcd(r, s) = 1, but gcd(l.d) > 1 when d runs over all d ∈ NS(X). In this<br />

case, the pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> [loc.cit.] fails unless <strong>on</strong>e takes the correct value <str<strong>on</strong>g>of</str<strong>on</strong>g> n, which is<br />

1.<br />

Theorem 5.1.14 (Orlov). Two K3 surfaces, X and M, have equivalent <str<strong>on</strong>g>derived</str<strong>on</strong>g><br />

<str<strong>on</strong>g>categories</str<strong>on</strong>g>, D b coh (X) ∼ = D b coh (M), if and <strong>on</strong>ly if the lattices TX and TM are Hodge<br />

isometric.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. See [36]. Here is a sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the pro<str<strong>on</strong>g>of</str<strong>on</strong>g>: when Db coh (X) ∼ = Db coh (M), the<br />

equivalence must be given by a Fourier-Mukai transform by Theorem 3.1.16 (this<br />

is the core <str<strong>on</strong>g>of</str<strong>on</strong>g> Orlov’s paper). Then, the results in Secti<strong>on</strong> 3.1 give Hodge isometries<br />

between TX and TM.<br />

In the other directi<strong>on</strong>, <strong>on</strong>e proves that if TX and TM are Hodge isometric, <strong>on</strong>e<br />

can extend this isometry to an isometry i : ˜ H(X, Z) ∼ = ˜ H(M, Z), and this can be<br />

d<strong>on</strong>e in such a way that if v = i−1 (0, 0, ωM), <strong>on</strong>e has <strong>on</strong> X a polarizati<strong>on</strong> such that<br />

M = M(v). Since n = 1 in this case (by Theorem 5.1.12), there exists a universal<br />

sheaf <strong>on</strong> X × M, which induces a Fourier-Mukai transform Db coh (X) ∼ = Db coh (M)<br />

(by Theorem 5.5.1).<br />

5.2 Deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Twisted Sheaves<br />

In this secti<strong>on</strong> we c<strong>on</strong>sider what happens when <strong>on</strong>e tries to deform a rank n vector<br />

bundle E0 <strong>on</strong> the central fiber X0 <str<strong>on</strong>g>of</str<strong>on</strong>g> a deformati<strong>on</strong>, under the hypothesis that c1(E0)<br />

does not extend to an algebraic class <strong>on</strong> neighboring fibers. This analysis will be<br />

used for identifying the obstructi<strong>on</strong> α from Definiti<strong>on</strong> 5.1.8. We are working over<br />

C.<br />

Let’s first set up the c<strong>on</strong>text. We start with f : X → S, a proper, smooth<br />

morphism <str<strong>on</strong>g>of</str<strong>on</strong>g> schemes or analytic spaces, and with 0 a closed point <str<strong>on</strong>g>of</str<strong>on</strong>g> S. The<br />

Brauer group we c<strong>on</strong>sider is Br ′<br />

an(X)tors, which is the natural generalizati<strong>on</strong> to the<br />

analytic setting <str<strong>on</strong>g>of</str<strong>on</strong>g> the étale Brauer group used in the algebraic case. Throughout<br />

this secti<strong>on</strong> we’ll be loose in our notati<strong>on</strong> and refer to Br ′ an(X)tors as the Brauer<br />

group <str<strong>on</strong>g>of</str<strong>on</strong>g> X, or Br ′ (X).<br />

Let X0 be the fiber <str<strong>on</strong>g>of</str<strong>on</strong>g> f over 0. We c<strong>on</strong>sider an element α ∈ Br(X), such that<br />

α|X0 is trivial as an element <str<strong>on</strong>g>of</str<strong>on</strong>g> Br(X0), and E a locally free α-<str<strong>on</strong>g>twisted</str<strong>on</strong>g> sheaf <strong>on</strong><br />

X. Since α|X0 = 0, we can find a modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the transiti<strong>on</strong> functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> E |X0<br />

by a coboundary in H2 (X0, O∗ ) such that the transiti<strong>on</strong> functi<strong>on</strong>s glue, to get an<br />

X0<br />

un<str<strong>on</strong>g>twisted</str<strong>on</strong>g> locally free sheaf E0 <strong>on</strong> X0. We want to understand what happens to<br />

c1(E0) in the neighboring fibers.<br />

Note that since the morphism f is smooth, by possibly restricting first the<br />

base S to a smaller open set (analytic or étale), we can identify the cohomology<br />

68

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!