10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

which by definiti<strong>on</strong> associates to an S-scheme T <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type the set <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism<br />

classes <str<strong>on</strong>g>of</str<strong>on</strong>g> T -flat families <str<strong>on</strong>g>of</str<strong>on</strong>g> semistable <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> the fibers <str<strong>on</strong>g>of</str<strong>on</strong>g> the morphism<br />

XT := T ×S X → T with Hilbert polynomial P . In particular, for any closed<br />

point s ∈ S <strong>on</strong>e has MX/S(P )s ∼ = MXs(P ). Moreover there is an open subscheme<br />

M s X/S (P ) ⊆ MX/S(P ) that universally corepresents the subfunctor M s X/S ⊆ MX/S<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> families <str<strong>on</strong>g>of</str<strong>on</strong>g> stable <str<strong>on</strong>g>sheaves</str<strong>on</strong>g>.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. See [25, 4.3.7].<br />

Propositi<strong>on</strong> 3.3.2. Let X/S be a flat, projective morphism, and let O(1) be a<br />

relatively ample sheaf <strong>on</strong> X/S. For a polynomial P , c<strong>on</strong>sider the relative moduli<br />

space M s /S <str<strong>on</strong>g>of</str<strong>on</strong>g> stable <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> with Hilbert polynomial P <strong>on</strong> the fibers <str<strong>on</strong>g>of</str<strong>on</strong>g> X/S. Then<br />

there exists a covering {Ui} <str<strong>on</strong>g>of</str<strong>on</strong>g> M s (by analytic open sets in the analytic setting, and<br />

by étale open sets in the algebraic setting) such that <strong>on</strong> each X ×S Ui there exists<br />

a local universal sheaf Ui. Furthermore, there exists an α ∈ ˇ H2 (M s , O∗ M s) (that<br />

<strong>on</strong>ly depends <strong>on</strong> X/S, O(1) and P ) and isomorphisms ϕij : Uj|Ui∩Uj → Ui|Ui∩Uj<br />

that make ({Ui}, {ϕij}) into an α-sheaf (which we will call a universal α-sheaf).<br />

Definiti<strong>on</strong> 3.3.3. The element α ∈ ˇ H2 (M s , O∗ M s) described above is called the<br />

obstructi<strong>on</strong> to the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a universal sheaf <strong>on</strong> X ×S M, and is denoted by<br />

Obs(X/S, P ), with O(1) being understood.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. For simplicity, we prove the statement in the absolute setting as the relative<br />

case is entirely similar; also, we work in the analytic category. We use the notati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> [25, Secti<strong>on</strong> 4.6]. Note that R s → M s is a principal PGL(V )-bundle ([25, 4.3.5])<br />

and hence R s is isomorphic, locally <strong>on</strong> M s , to the product <str<strong>on</strong>g>of</str<strong>on</strong>g> M s and PGL(V ). If U<br />

is any open set in M s over which R s is trivial, say isomorphic to PGL(V )×U → U,<br />

we can find over it GL(V )-linearized line bundles <str<strong>on</strong>g>of</str<strong>on</strong>g> Z-weight 1: for example,<br />

GL(V ) × U → PGL(V ) × U is such a line bundle. Now apply a local versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> [25,<br />

4.6.2] to c<strong>on</strong>clude that for every open set U <str<strong>on</strong>g>of</str<strong>on</strong>g> M s such that Rs ×M s U is trivial<br />

(as a PGL(V )-bundle), there exists a local universal sheaf U <strong>on</strong> X × U.<br />

The existence <str<strong>on</strong>g>of</str<strong>on</strong>g> α ∈ ˇ H2 (M s , O∗ M s) and <str<strong>on</strong>g>of</str<strong>on</strong>g> the isomorphisms ϕij that make<br />

({Ui}, {ϕij}) into a universal α-sheaf now follows in exactly the same way as in<br />

the pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> [32, A.6], and the uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> α is routine checking.<br />

Propositi<strong>on</strong> 3.3.4 (Mukai, [32, A.6]). Let X, M, S be proper schemes or analytic<br />

spaces over C, with M integral, and assume given morphisms X → S and<br />

M → S, such that X → S is projective. Let p1 and p2 be the projecti<strong>on</strong>s to X<br />

and M from X ×S M. For α ∈ ˇ H2 (M, O∗ M ) assume that there exists a coherent<br />

p∗ 2α-<str<strong>on</strong>g>twisted</str<strong>on</strong>g> sheaf F <strong>on</strong> X ×S M that is flat over M. Then α is in fact in Br(M).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Using Lemma 1.2.6, represent F as ({Fi}, {ϕij}) <strong>on</strong> a cover {p −1<br />

2 (Ui)},<br />

where {Ui} is an open cover <str<strong>on</strong>g>of</str<strong>on</strong>g> M. Pull back a relatively ample sheaf <strong>on</strong> X/S<br />

via p1 to get a relatively ample sheaf O(1) <strong>on</strong> X ×S M → M, flat over M. Now<br />

using semic<strong>on</strong>tinuity, for each i we can find n0 such that for n ≥ n0 we have<br />

p2∗(Fi ⊗ O(n)) locally free <strong>on</strong> Ui. Since M is proper over C, we can choose n0<br />

47

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!