10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Corollary 6.5.6. Under the hypotheses <str<strong>on</strong>g>of</str<strong>on</strong>g> the previous theorem, ¯ J has trivial<br />

can<strong>on</strong>ical class.<br />

105<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. The result follows at <strong>on</strong>ce when <strong>on</strong>e notes that the Serre functors in D b coh (X)<br />

and D b coh ( ¯ J, ¯α −1 ) must be the same (being defined categorically), and these determine<br />

the respective can<strong>on</strong>ical classes.<br />

6.6 Equivalent Twistings<br />

The result we want to focus <strong>on</strong> in this secti<strong>on</strong> is the following:<br />

Theorem 6.6.1. Let X → S be a generic elliptic Calabi-Yau threefold, and let<br />

J → S be its relative Jacobian. Let ¯ J → J be any analytic small resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

singularities <str<strong>on</strong>g>of</str<strong>on</strong>g> J, let ¯α ∈ Br( ¯ J) be the twisting defined in Theorem 6.5.4, and let<br />

n be the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯α in Br( ¯ J). Then we have<br />

for any k coprime to n.<br />

D b coh( ¯ J, ¯α) ∼ = D b coh( ¯ J, ¯α k ),<br />

This result should be compared to the similar <strong>on</strong>e for K3 surfaces (Theorem<br />

5.5.2), and c<strong>on</strong>trasted to the corresp<strong>on</strong>ding situati<strong>on</strong> for spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> local rings<br />

(Theorem 1.3.19).<br />

Theorem 6.6.2. Let X → S be a generic elliptic Calabi-Yau threefold, and let<br />

M → S be the relative moduli space <str<strong>on</strong>g>of</str<strong>on</strong>g> semistable <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> rank 1, degree k <strong>on</strong><br />

the fibers <str<strong>on</strong>g>of</str<strong>on</strong>g> X → S, for an appropriate choice <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively ample sheaf <strong>on</strong> X → S.<br />

Let Y be the uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> M that c<strong>on</strong>tain a point corresp<strong>on</strong>ding to<br />

a stable line bundle <strong>on</strong> a fiber <str<strong>on</strong>g>of</str<strong>on</strong>g> X → S. Then Y is in fact smooth, irreducible, a<br />

universal sheaf exists <strong>on</strong> X ×S Y , and<br />

D b coh(X) ∼ = D b coh(Y ).<br />

Notati<strong>on</strong> 6.6.3. In keeping with the notati<strong>on</strong> introduced in Secti<strong>on</strong> 4.5, we will<br />

denote Y by X k .<br />

Before we proceed to the pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> this theorem, let us remark that Theorem 6.6.1<br />

is an immediate c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> this result: indeed, it is easy to see that Y is again<br />

a generic elliptic Calabi-Yau threefold: the equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g> D b coh (X) ∼ =<br />

D b coh (Y ) implies KY = 0 by the uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> the Serre functor. Also, the isometry<br />

induced by the Fourier-Mukai transform (Corollary 3.1.13 and Propositi<strong>on</strong> 3.1.14),<br />

induces an isomorphism<br />

H 2,0 (X) ⊕ H 4,0 (X) ∼ = H 2,0 (Y ) ⊕ H 4,0 (Y ),<br />

and therefore H 2,0 (Y ) = 0. By Serre duality, this implies H 1 (Y, OY ) = 0, so that<br />

Y is Calabi-Yau. Since X and Y are locally isomorphic over S, they obviously have

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!