10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

114<br />

into account also <str<strong>on</strong>g>derived</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g>. This is rather vague, but<br />

it seems to coincide with physicists’ belief that when the Brauer group <str<strong>on</strong>g>of</str<strong>on</strong>g> a space<br />

is n<strong>on</strong>-trivial, <strong>on</strong>e can c<strong>on</strong>struct more than <strong>on</strong>e physical theory <strong>on</strong> that space, by<br />

introducing into the game the elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the Brauer group.<br />

One can even attempt to pursue this <strong>on</strong>e step further: by work <str<strong>on</strong>g>of</str<strong>on</strong>g> Bridgeland-<br />

King-Reid ([8]), it is known that <strong>on</strong>e has<br />

D G coh(Z) ∼ = D b coh(Y ),<br />

where Y is the crepant resoluti<strong>on</strong> we c<strong>on</strong>structed before. Here, DG coh (Z) denotes<br />

the bounded <str<strong>on</strong>g>derived</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent, G-equivariant <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> Z.<br />

The group H2 (G, C∗ ) classifies central extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the form<br />

0 → C ∗ → K → G → 0.<br />

If <strong>on</strong>e c<strong>on</strong>siders the trivial extensi<strong>on</strong>, K = G ⊕ C∗ , <strong>on</strong>e obtains that the Kequivariant<br />

<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> Z are just the G-equivariant <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> Z. However, when<br />

<strong>on</strong>e c<strong>on</strong>siders the n<strong>on</strong>-trivial extensi<strong>on</strong> K (which corresp<strong>on</strong>ds to the n<strong>on</strong>-trivial<br />

element <str<strong>on</strong>g>of</str<strong>on</strong>g> H2 (G, C∗ )), <strong>on</strong>e obtains a new <str<strong>on</strong>g>derived</str<strong>on</strong>g> category, DK coh (Z). This seems<br />

to suggest that <strong>on</strong>e should expect an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> the sort<br />

D K coh(Z) ∼ = D b coh(X, α),<br />

where X is any deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Z having ODP’s at the 64 prescribed points, and<br />

α is the unique n<strong>on</strong>-trivial element <str<strong>on</strong>g>of</str<strong>on</strong>g> Br(X).<br />

Of course, this cannot be expected to hold as such. Probably, we would have to<br />

take a small, analytic resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the singularities <str<strong>on</strong>g>of</str<strong>on</strong>g> X, as we did in the case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the relative Jacobian. Also, another problem with this equivalence is that it seems<br />

to be independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the particular deformati<strong>on</strong> taken. The fact that X and Y<br />

are mirrors seems to suggest that D b coh<br />

(X, α) should in fact be equivalent to some<br />

Fukaya category <strong>on</strong> Z.<br />

The relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> this situati<strong>on</strong> to the <strong>on</strong>e we studied before is the following:<br />

if X is the elliptic Calabi-Yau X that we c<strong>on</strong>sidered in the previous secti<strong>on</strong>s, let J<br />

be its relative Jacobian. On ¯ J, a small resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> J, we have two interesting, and<br />

entirely different, <str<strong>on</strong>g>derived</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g>: <strong>on</strong>e, Db coh ( ¯ J, 0) is the usual <str<strong>on</strong>g>derived</str<strong>on</strong>g> category<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ¯ J. The other <strong>on</strong>e, Db coh ( ¯ J, α), is the same as Db coh (X). If <str<strong>on</strong>g>derived</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g> are<br />

thought <str<strong>on</strong>g>of</str<strong>on</strong>g> as physical theories, this means that <strong>on</strong> ¯ J we can c<strong>on</strong>struct two different<br />

(X) and<br />

physical theories, both <str<strong>on</strong>g>of</str<strong>on</strong>g> them “smooth” (since they corresp<strong>on</strong>d to Db coh<br />

Db coh ( ¯ J), and both spaces are smooth). However, if <strong>on</strong>e attempts to deform J so<br />

as to remove its singularities, <strong>on</strong>e observes that its Brauer group becomes zero.<br />

Thus, from a deformed J, <strong>on</strong>e cannot hope to recover more than <strong>on</strong>e physical<br />

theory (Db coh (J)), a situati<strong>on</strong> very similar to the <strong>on</strong>e studied by Vafa and Witten.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!