10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

under the identificati<strong>on</strong> H 2 (X, Z) ∼ = H 2 (X0, Z) and the inclusi<strong>on</strong><br />

(H 2 (X, Z)/NS(X)) ⊗ Q/Z ↩→ Br ′ (X).<br />

The interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this theorem is the following: if we try to deform a vector<br />

bundle E0, given <strong>on</strong> the central fiber X0, in a family in which the class c1(E0) is<br />

not algebraic in neighboring fibers Xt, the <strong>on</strong>ly hope to be able to do this is to<br />

deform E0 as a <str<strong>on</strong>g>twisted</str<strong>on</strong>g> sheaf, and then the twisting should be precisely<br />

− 1<br />

rk(E0) c1(E0).<br />

We first need a couple <str<strong>on</strong>g>of</str<strong>on</strong>g> propositi<strong>on</strong>s:<br />

Lemma 5.2.2 (The Roman 9 Lemma). Let A be an abelian category with enough<br />

injectives, F a left-exact functor, and let H i be the right <str<strong>on</strong>g>derived</str<strong>on</strong>g> functors <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

F . C<strong>on</strong>sider a commutative diagram<br />

0 0<br />

❩ ❩❩⑦ ✚ ✚ ✚❃<br />

0 ✲ A ✲ B<br />

❩<br />

❩❩⑦<br />

✲ C<br />

✚<br />

✚<br />

✲ 0<br />

✚❃<br />

✚<br />

D<br />

✚✚❃<br />

❩ 0<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

✲ A ✲ E<br />

❩<br />

❩⑦<br />

✲ F ✲ 0<br />

✚ ✚✚❃<br />

❩ 0<br />

❩<br />

❩⑦<br />

0<br />

with exact rows and diag<strong>on</strong>als (A, B, C, D, E, F ∈ Ob(A )).<br />

Then the induced diagram in cohomology<br />

H i (A) ✲ H i (B) ✲ H i (C) ✲ H i+1 (A)<br />

❩<br />

❩❩⑦ ✚<br />

✚ ✚❃<br />

H i (D)<br />

✚ ✚✚❃<br />

❩ ❩<br />

❩⑦<br />

H i <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(A) ✲ i<br />

H (E) ✲ i<br />

H (F ) ✲ i+1<br />

H (A)<br />

commutes as well, except for the right pentag<strong>on</strong> which anti-commutes.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. The <strong>on</strong>ly n<strong>on</strong>-trivial issue is the anti-commutativity <str<strong>on</strong>g>of</str<strong>on</strong>g> the right pentag<strong>on</strong>;<br />

we’ll prove it <strong>on</strong>ly for the case when A is the category <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-coherent <str<strong>on</strong>g>sheaves</str<strong>on</strong>g><br />

<strong>on</strong> a scheme X, and <strong>on</strong>e uses Čech cohomology. In the general case <str<strong>on</strong>g>of</str<strong>on</strong>g> an abelian<br />

category, this is an easy exercise in homological algebra (d<strong>on</strong>e for example in [44]).<br />

Let d be an element <str<strong>on</strong>g>of</str<strong>on</strong>g> Hi (D), and represent it as a Čech cocycle {dj0...ji } over<br />

some fine enough cover <str<strong>on</strong>g>of</str<strong>on</strong>g> X. From here <strong>on</strong> we’ll omit the indices, and just refer<br />

to this collecti<strong>on</strong> as d.<br />

70

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!