10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3. We d<strong>on</strong>’t need to prove anything here.<br />

4.3. If Y and S are schemes or analytic spaces, and α ∈ Br(Y × S), then it makes<br />

sense to say that an α-sheaf F is flat over S: demand that the stalks <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

local <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> be flat modules over the corresp<strong>on</strong>ding stalks <str<strong>on</strong>g>of</str<strong>on</strong>g> OS.<br />

4.4. We’ll <strong>on</strong>ly use the statement in the same setting as in the original paper (no<br />

α-<str<strong>on</strong>g>twisted</str<strong>on</strong>g> versi<strong>on</strong>.)<br />

4.5. Follows from the results in Secti<strong>on</strong>s 2.3 and 2.4.<br />

5.1. The criteri<strong>on</strong> for a complex to c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> just <strong>on</strong>e sheaf supported at a point<br />

and the fact that a composite <str<strong>on</strong>g>of</str<strong>on</strong>g> two Fourier-Mukai transforms is again a<br />

Fourier-Mukai transform is proved like [4, 1.5] and [4, 1.4]. Note that Q is<br />

now a complex <str<strong>on</strong>g>of</str<strong>on</strong>g> (p ∗ 1α) · (p ∗ 2α −1 )-<str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> Y × Y (with p1, p2 the<br />

projecti<strong>on</strong>s).<br />

5.2. Local statement <strong>on</strong> Y .<br />

5.3. By restricting ourselves to a small enough S, we can assume that Q is not<br />

<str<strong>on</strong>g>twisted</str<strong>on</strong>g> over S. Furthermore, since in the case where we apply this lemma<br />

we actually have an open immersi<strong>on</strong> i : S → Y , and for a point s ∈ S, Qs is<br />

supported at the point i(s) <str<strong>on</strong>g>of</str<strong>on</strong>g> Y , we see that Q can actually be taken to be<br />

n<strong>on</strong>-<str<strong>on</strong>g>twisted</str<strong>on</strong>g>. It is important to note here that if an α-sheaf F is supported<br />

inside an open set U such that α|U is trivial, then<br />

Ext i<br />

α-Mod(F , F ) = Ext i<br />

Mod(F , F ),<br />

because an α-injective resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> F can be restricted to U to give a (n<strong>on</strong><str<strong>on</strong>g>twisted</str<strong>on</strong>g>)<br />

injective resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> F (viewed as a n<strong>on</strong>-<str<strong>on</strong>g>twisted</str<strong>on</strong>g> sheaf now).<br />

5.4. There is nothing special about α-<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> here.<br />

3.3 Moduli Spaces and Universal Sheaves<br />

We collect in this secti<strong>on</strong> various results regarding the existence and c<strong>on</strong>structi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> absolute/relative moduli spaces, and <str<strong>on</strong>g>of</str<strong>on</strong>g> (possibly <str<strong>on</strong>g>twisted</str<strong>on</strong>g>) universal <str<strong>on</strong>g>sheaves</str<strong>on</strong>g>.<br />

Theorem 3.3.1 (Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> Relative Moduli Spaces). Let f : X → S<br />

be a projective morphism <str<strong>on</strong>g>of</str<strong>on</strong>g> C-schemes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type with c<strong>on</strong>nected fibers, and let<br />

OX(1) be a line bundle <strong>on</strong> X very ample relative to S. Then for a given polynomial<br />

P there is a projective morphism MX/S(P ) → S which universally corepresents the<br />

functor<br />

MX/S : (Sch/S) ◦ → Ens,<br />

46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!