10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Theorem 5.1.10. Under the hypotheses <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 5.1.6, the map ϕ is a Hodge<br />

isometry between ˜ H(X, Q) and ˜ H(M, Q). It maps v ∈ ˜ H(X, Q) to the vector<br />

(0, 0, ω) ∈ ˜ H(M, Q), and it therefore induces a Hodge isometry<br />

v ⊥ /v ∼ = H 2 (M, Q),<br />

the latter being computed inside ˜ H(X, Q). Restricted to v ⊥ /v, this isometry is<br />

independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-universal bundle and is integral, i.e. it takes<br />

integral vectors to integral vectors. It therefore induces a Hodge isometry<br />

the latter now computed in ˜ H(X, Z).<br />

H 2 (M, Z) ∼ = v ⊥ /v,<br />

Remark 5.1.11. Using the Torelli theorem, this gives a complete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

moduli space M.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. When the moduli problem is fine, <strong>on</strong>e first proves that U (the universal<br />

sheaf) induces an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>derived</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g> Db coh (X) ∼ = Db coh (M). We’ll<br />

do this in a more general c<strong>on</strong>text, in Theorem 5.5.1. Then the result follows<br />

immediately from the results in Secti<strong>on</strong> 3.1. The general case (when the moduli<br />

problem is not fine) is d<strong>on</strong>e by a deformati<strong>on</strong> argument in [25, Chapter 6].<br />

Theorem 5.1.12. Let n be the greatest comm<strong>on</strong> divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> the numbers (u, v),<br />

where u runs over all ˜ H 1,1 (X) ∩ ˜ H(X, Z). Then the following statements hold:<br />

1. There exist α-<str<strong>on</strong>g>twisted</str<strong>on</strong>g> locally free <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> M <str<strong>on</strong>g>of</str<strong>on</strong>g> ranks r1, r2, . . . , rk, with<br />

gcd(r1, r2, . . . , rk) = n, and therefore α is n-torsi<strong>on</strong>. (α is the obstructi<strong>on</strong><br />

described in Definiti<strong>on</strong> 5.1.8.)<br />

2. Denote by ϕ any cohomological Fourier-Mukai transform defined above (for<br />

some choice <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-universal sheaf). Then ϕ maps TX into TM, (viewing<br />

TX as a sublattice <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜ H(X, Z) via the inclusi<strong>on</strong> λ ↦→ (0, λ, 0)), and ϕ|TX is<br />

independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-universal bundle used to define it.<br />

3. There exists λ ∈ TX such that v + λ is divisible by n (in ˜ H(X, Z)); for such<br />

a λ we have ϕ(λ) divisible by n (in TM).<br />

4. ϕ is injective, and its cokernel is a finite, cyclic group <str<strong>on</strong>g>of</str<strong>on</strong>g> order n, generated<br />

by ϕ(λ)/n for any λ satisfying the c<strong>on</strong>diti<strong>on</strong> in (3).<br />

Example 5.1.13. In Example 5.1.7 the number n = 2. Therefore the obstructi<strong>on</strong><br />

α (which lives in the Brauer group <str<strong>on</strong>g>of</str<strong>on</strong>g> the moduli space, which is the double cover<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> P 2 branched over a sextic) is <str<strong>on</strong>g>of</str<strong>on</strong>g> order 2.<br />

67

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!