10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(Here (ϕ −1<br />

i )∨ is the transpose <str<strong>on</strong>g>of</str<strong>on</strong>g> ϕ −1<br />

i , and we have omitted the restricti<strong>on</strong>s to<br />

Ui ∩ Uj.)<br />

For f ∗ F take ({f ∗ Fi}, {f ∗ ϕij}) <strong>on</strong> {f −1 (Ui)}.<br />

Now c<strong>on</strong>sider the case <str<strong>on</strong>g>of</str<strong>on</strong>g> f∗. Choose an open cover {Ui} <str<strong>on</strong>g>of</str<strong>on</strong>g> X such that α<br />

is trivial al<strong>on</strong>g Ui for all i, and thus f ∗ α is trivial <strong>on</strong> f −1 (Ui) for all i. Using<br />

Corollary 1.2.6 write F as ({Fi}, {ϕij}) <strong>on</strong> {f −1 (Ui)}. Take f∗F to be given by<br />

{f∗Fi}, {f∗ϕij}) <strong>on</strong> {Ui}.<br />

A similar c<strong>on</strong>structi<strong>on</strong> works for f!.<br />

Remark 1.2.11. Note that if F and G are α-<str<strong>on</strong>g>sheaves</str<strong>on</strong>g>, then Hom(F , G ) is a sheaf<br />

without needing to choose a 1-cocycle g as in Lemma 1.2.8. Thus the following<br />

lemma makes sense (if we had to choose <strong>on</strong>e, this choice <str<strong>on</strong>g>of</str<strong>on</strong>g> a line bundle would<br />

have influenced the space <str<strong>on</strong>g>of</str<strong>on</strong>g> global secti<strong>on</strong>s).<br />

Propositi<strong>on</strong> 1.2.12. For F , G ∈ Mod(X, α) we have<br />

Γ(X, Hom(F , G )) ∼ = Hom(F , G ).<br />

(Since Hom(F , G ) is a regular sheaf, it makes sense to c<strong>on</strong>sider its global secti<strong>on</strong>s.)<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Trivial chase through the definiti<strong>on</strong>s.<br />

Propositi<strong>on</strong> 1.2.13. The functor f∗ is a right adjoint to f ∗ , as functors between<br />

Mod(X, α) and Mod(Y, f ∗ α). If f is an open immersi<strong>on</strong>, then f! is a left adjoint<br />

to f ∗ .<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. On X c<strong>on</strong>sider the <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> H1 = f∗Hom Mod(Y,f ∗ α)(f ∗ F , G ) and H2 =<br />

Hom Mod(X,α)(F , f∗G ). If U is a small enough open set to trivialize α then there<br />

are natural isomorphisms H1|U → H2|U which glue al<strong>on</strong>g intersecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

U’s, to give a natural isomorphism H1 ∼ = H2 and hence (taking global secti<strong>on</strong>s) a<br />

natural isomorphism<br />

HomMod(Y,f ∗ α)(f ∗ F , G ) ∼ = HomMod(X,α)(F , f∗G ).<br />

The same pro<str<strong>on</strong>g>of</str<strong>on</strong>g> works for f!.<br />

1.3 Modules over an Azumaya Algebra<br />

When dealing with twisting classes α ∈ Br(X), there is a more natural descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mod(X, α) in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over an Azumaya algebra (thus<br />

avoiding any problems related to open covers, refinements, etc.) In this secti<strong>on</strong> we<br />

describe this corresp<strong>on</strong>dence.<br />

For a thorough treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> Azumaya algebras over a scheme and <str<strong>on</strong>g>of</str<strong>on</strong>g> the Brauer<br />

group, the reader should c<strong>on</strong>sult [30, Chapter IV].<br />

Lemma 1.3.1 (Skolem-Noether). Let R be a commutative ring, and let E and<br />

F be free R-modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite rank. Then every isomorphism End(E) → End(F )<br />

(as R-algebras) is induced by an isomorphism E → F .<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!