10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Propositi<strong>on</strong> 2.3.10. Let f : X → Y be a proper morphism <str<strong>on</strong>g>of</str<strong>on</strong>g> schemes or analytic<br />

spaces, and let α ∈ ˇ H 2 (Y, O ∗ Y ). Let u : Y ′ → Y be a flat morphism, let X ′ =<br />

X ×Y Y ′ , and let v, g be the projecti<strong>on</strong>s, as shown:<br />

X ′<br />

v ✲ X<br />

Y ′<br />

g f<br />

❄ u ❄<br />

✲ Y.<br />

Then there is a natural functorial isomorphism<br />

for F · ∈ Dcoh(X, f ∗ α).<br />

u ∗ Rf∗F · ∼<br />

−→ Rg∗v ∗ F ·<br />

Propositi<strong>on</strong> 2.3.11. Let X be a scheme or analytic space, and let α, α ′ , α ′′ ∈<br />

ˇH 2 (X, O∗ X ). Then there are natural functorial isomorphisms<br />

and<br />

L<br />

·<br />

F ⊗ G · ∼ ·<br />

−→ G L<br />

⊗ F ·<br />

L L<br />

· ·<br />

F ⊗ (G ⊗ H · ) ∼ L<br />

·<br />

−→ (F ⊗ G · ) L<br />

⊗ H ·<br />

for F · ∈ D −<br />

coh (X, α), G· ∈ D −<br />

coh (X, α′ ), H · ∈ D −<br />

coh (X, α′′ ).<br />

Propositi<strong>on</strong> 2.3.12. Let X be a scheme or analytic space, and let α, α ′ , α ′′ ∈<br />

ˇH 2 (X, O∗ X ). Then there is a natural functorial isomorphism<br />

RHom · (F · , G · ) L<br />

⊗ H · ∼<br />

−→ RHom · (F · , G · L<br />

⊗ H · )<br />

for F · ∈ D −<br />

coh (X, α), G· ∈ D +<br />

coh (X, α′ ) and H · ∈ Dcoh(X, α ′′ )fTd.<br />

Propositi<strong>on</strong> 2.3.13. Let X be a scheme or analytic space, let α, α ′ ∈ Br(X),<br />

α ′′ ∈ ˇ H2 (X, O∗ X ), and assume that every coherent sheaf <strong>on</strong> X is a quotient <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

lffr. Then there is a natural functorial isomorphism<br />

RHom · (F · , RHom · (G · , H · )) ∼<br />

−→ RHom · L<br />

·<br />

(F ⊗ G · , H · )<br />

for F · ∈ D −<br />

coh (X, α), G· ∈ D −<br />

coh (X, α′ ) and H · ∈ D +<br />

coh (X, α′′ ).<br />

Propositi<strong>on</strong> 2.3.14. Let X be a scheme or analytic space, let α, α ′ , α ′′ ∈ ˇ H 2 (X,<br />

O ∗ X ), and let L· be a bounded complex <str<strong>on</strong>g>of</str<strong>on</strong>g> α-lffr’s. Let L ·∨ = Hom · (L · , OX). Then<br />

there are natural functorial isomorphisms<br />

RHom · (F · , G · ) L<br />

⊗ L · ∼<br />

· · ·<br />

−→ RHom (F , G L<br />

⊗ L · ) ∼<br />

−→ RHom · L<br />

·<br />

(F ⊗ L ·∨ , G · )<br />

for F · ∈ D −<br />

coh (X, α′ ), G · ∈ D +<br />

coh (X, α′′ ).<br />

36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!