10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. All the c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2.2.8 are satisfied, for A = Mod(X, α),<br />

A ′ = Coh(X, α), B = Mod(X h , α h ), B ′ = Coh(X h , α h ) and F . (Use Theorem 1.3.9<br />

and Propositi<strong>on</strong> 2.2.9.) For the last statement, use again dévissage; the basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the inducti<strong>on</strong> is provided by the fact that<br />

h ∗ Ext i<br />

Coh(X,α)(F , G ) ∼ = Ext i<br />

Coh(Xh ,αh ) (F (F ), F (G ))<br />

for any F ∈ Coh(X, α), G ∈ Coh(X, α ′ ).<br />

2.3 Relati<strong>on</strong>s Am<strong>on</strong>g Derived Functors<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the following statements are entirely similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>ding<br />

<strong>on</strong>es in [23, II.5], so they will be omitted. Note that the results are given<br />

in their full generality, but we will <strong>on</strong>ly need them in a much more restricted situati<strong>on</strong>:<br />

all the spaces involved are smooth and compact, all morphisms are proper<br />

and smooth, all twistings are in the Brauer group and all complexes are bounded.<br />

These results hold then with no extra restricti<strong>on</strong>s.<br />

Propositi<strong>on</strong> 2.3.1. Let f : X → Y and g : Y → Z be two proper morphisms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> schemes or analytic spaces, and let α ∈ ˇ H2 (Z, O∗ Z ). Then there is a natural<br />

isomorphism<br />

R(g∗ ◦ f∗) ∼<br />

−→ Rg∗ ◦ Rf∗<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> functors from Dcoh(X, f ∗ g ∗ α) to Dcoh(Z, α).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. To prove this, all we need to do is show that if I is an injective f ∗ g ∗ αsheaf,<br />

then f∗I is a g∗-acyclic g ∗ α-sheaf. But this statement is local <strong>on</strong> Z, and<br />

therefore it follows from the corresp<strong>on</strong>ding <strong>on</strong>e for <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> by Lemma 1.2.6.<br />

Propositi<strong>on</strong> 2.3.2. Let X be a scheme or analytic space, and let α ∈ ˇ H 2 (X, O ∗ X ).<br />

Then there is a natural isomorphism<br />

R Hom · (F · , G · ) ∼<br />

−→ RΓ(X, RHom · (F · , G · ))<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bi-functors from D −<br />

coh (X, α)◦ × D +<br />

coh (X, α) to D(Ab).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> follows as in [23, I.5.3], using the easy fact that if I is an injective<br />

α-sheaf, Hom(F , I ) is flasque for any α-sheaf F (easy).<br />

Propositi<strong>on</strong> 2.3.3. Let f : X → Y and g : Y → Z be morphisms <str<strong>on</strong>g>of</str<strong>on</strong>g> schemes or<br />

analytic spaces, and let α ∈ ˇ H2 (Z, O∗ Z ). Then there is a natural isomorphism<br />

L(f ∗ ◦ g ∗ ) ∼<br />

−→ Lf ∗ ◦ Lg ∗<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> functors from D −<br />

coh (Z, α) to D−<br />

coh (X, f ∗g∗α). 34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!