10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

First, this category is invariant <str<strong>on</strong>g>of</str<strong>on</strong>g> the choices made: it does not depend <strong>on</strong><br />

the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> the open cover, or <str<strong>on</strong>g>of</str<strong>on</strong>g> the particular Čech cocycle. Moreover, in most<br />

interesting cases there is another, more natural descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this category, as the<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over a sheaf <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-commutative algebras. In this<br />

sense, the category <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> should be viewed as a n<strong>on</strong>-commutative analogue<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the category <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> the underlying scheme or analytic space<br />

X. However, this n<strong>on</strong>-commutative situati<strong>on</strong> is just a very mild generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the commutative setting, because the n<strong>on</strong>-commutative algebras that appear in<br />

this way are the simplest possible <strong>on</strong>es, Azumaya algebras. (For a descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Azumaya algebras, the reader should c<strong>on</strong>sult Secti<strong>on</strong> 1.1; for the equivalence<br />

between <str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> and <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over an Azumaya algebra, see<br />

Secti<strong>on</strong> 1.3.)<br />

The questi<strong>on</strong> that arises at this point is, why are <str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> interesting,<br />

and where do they occur naturally? A starting point would be the study <str<strong>on</strong>g>of</str<strong>on</strong>g> Brauer-<br />

Severi varieties (P n -bundles which are not locally trivial in the Zariski topology,<br />

but are locally trivial in finer topologies, like the étale or the analytic topology).<br />

But the most important occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> is in the study <str<strong>on</strong>g>of</str<strong>on</strong>g> moduli<br />

spaces <str<strong>on</strong>g>of</str<strong>on</strong>g> semistable <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> projective varieties.<br />

The difficulty with most moduli problems is that they are not fine: although<br />

a moduli space exists (which parametrizes in a nice, algebraic way the objects<br />

under c<strong>on</strong>siderati<strong>on</strong>), a universal object fails to exist. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> semistable<br />

<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> a projective variety X, this means that a moduli space M exists (whose<br />

points [F ] corresp<strong>on</strong>d to semistable <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> F <strong>on</strong> X), but there does not exist a<br />

universal sheaf <strong>on</strong> X × M, i.e. a sheaf U such that U |X×[F] ∼ = F . One cause for<br />

this problem is unsolvable: some points in M (the so-called properly semistable<br />

points) represent more than <strong>on</strong>e semistable sheaf <strong>on</strong> X (they actually represent a<br />

whole S-equivalence class <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g>). However, even when there are no properly<br />

semistable points in M, there may not exist a universal sheaf <strong>on</strong> X × M. The<br />

reas<strong>on</strong> is that although universal <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> exist locally <strong>on</strong> M, they may not glue<br />

well al<strong>on</strong>g all <str<strong>on</strong>g>of</str<strong>on</strong>g> M. (D<strong>on</strong>’t be fooled by the word universal: although the universal<br />

<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> do represent a functor, they are not unique, and it is precisely this lack <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

uniqueness that causes them to fail to glue.)<br />

This suggests that there may be a hope in gluing these local <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> into a<br />

<str<strong>on</strong>g>twisted</str<strong>on</strong>g> universal sheaf: this is indeed the case, and for any moduli problem <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

semistable <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> a space X, we can find a <str<strong>on</strong>g>twisted</str<strong>on</strong>g> universal sheaf <strong>on</strong> X × M s ,<br />

where M s denotes the stable part <str<strong>on</strong>g>of</str<strong>on</strong>g> M (the set <str<strong>on</strong>g>of</str<strong>on</strong>g> points which are not properly<br />

semistable). The twisting depends <strong>on</strong>ly <strong>on</strong> the moduli problem under c<strong>on</strong>siderati<strong>on</strong><br />

(and not <strong>on</strong> the particular choice <str<strong>on</strong>g>of</str<strong>on</strong>g> local universal <str<strong>on</strong>g>sheaves</str<strong>on</strong>g>), and therefore we can<br />

also view it as the obstructi<strong>on</strong> to the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a universal sheaf <strong>on</strong> X × M s (if<br />

we wish to take a negative point <str<strong>on</strong>g>of</str<strong>on</strong>g> view!).<br />

Next we study integral transforms between the <str<strong>on</strong>g>derived</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> X and <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

M, defined by means <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>twisted</str<strong>on</strong>g> universal sheaf U . It turns out that if U is<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!