10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>twisted</str<strong>on</strong>g> by α ∈ Br(M), then we get integral functors<br />

Φ U M→X : D b coh(M, α −1 ) → D b coh(X)<br />

U ∨<br />

ΦX→M : D b coh(X) → D b coh(M, α −1 )<br />

where U ∨ is the dual (in the <str<strong>on</strong>g>derived</str<strong>on</strong>g> category) <str<strong>on</strong>g>of</str<strong>on</strong>g> U , and D b coh (M, α−1 ) is the<br />

<str<strong>on</strong>g>derived</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> the category <str<strong>on</strong>g>of</str<strong>on</strong>g> α −1 -<str<strong>on</strong>g>twisted</str<strong>on</strong>g> coherent <str<strong>on</strong>g>sheaves</str<strong>on</strong>g>. These functors<br />

are defined in a manner entirely similar to the way corresp<strong>on</strong>dences in cohomology<br />

(given by a cocycle in H ∗ (X × M)) are defined, and in fact sometimes there are<br />

such corresp<strong>on</strong>dences associated to these integral functors. For more details, see<br />

Secti<strong>on</strong> 3.1.<br />

The reas<strong>on</strong> this is a natural thing to do is the fact (discovered by Mukai)<br />

that in many cases <str<strong>on</strong>g>of</str<strong>on</strong>g> interest these integral functors turn out to be equivalences,<br />

providing powerful tools for studying the geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> M. As an example <str<strong>on</strong>g>of</str<strong>on</strong>g> an applicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this philosophy, Mukai proved (in [32]) that a compact, 2-dimensi<strong>on</strong>al<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the moduli space <str<strong>on</strong>g>of</str<strong>on</strong>g> stable <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> a K3 surface is again a K3<br />

surface (Theorem 5.1.6). To use this idea we need a criteri<strong>on</strong> for checking when an<br />

integral functor is an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>derived</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g>, and we provide <strong>on</strong>e, very<br />

similar to the <strong>on</strong>e for un<str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>derived</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g> due to Mukai, B<strong>on</strong>dal-Orlov<br />

and Bridgeland (Theorem 3.2.1).<br />

We study what happens <strong>on</strong> the level <str<strong>on</strong>g>of</str<strong>on</strong>g> cohomology, when such an equivalence<br />

exists (for un<str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g>). We extend Mukai’s results for K3 surfaces to higher<br />

dimensi<strong>on</strong>s, with the aim <str<strong>on</strong>g>of</str<strong>on</strong>g> applying them to examples <str<strong>on</strong>g>of</str<strong>on</strong>g> Calabi-Yau threefolds<br />

(in Chapter 6). The main result in this directi<strong>on</strong> is the pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fact that<br />

under a certain modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the usual cup product <strong>on</strong> the total cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a space (similar to the Mukai product <strong>on</strong> a K3), the cohomological Fourier-Mukai<br />

transforms give isometries between the total cohomology groups <str<strong>on</strong>g>of</str<strong>on</strong>g> X and <str<strong>on</strong>g>of</str<strong>on</strong>g> M.<br />

This is used later to c<strong>on</strong>struct counterexamples to the generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Torelli<br />

theorem from K3 surfaces to Calabi-Yau threefolds.<br />

These results form the first part <str<strong>on</strong>g>of</str<strong>on</strong>g> the dissertati<strong>on</strong>. We also include general<br />

results regarding the Brauer group, the category <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> and its <str<strong>on</strong>g>derived</str<strong>on</strong>g><br />

category, Morita theory <strong>on</strong> a scheme.<br />

The sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> the work is devoted to the study <str<strong>on</strong>g>of</str<strong>on</strong>g> examples: smooth<br />

elliptic fibrati<strong>on</strong>s and Ogg-Shafarevich theory, K3 surfaces, and elliptic Calabi-<br />

Yau threefolds.<br />

For smooth elliptic fibrati<strong>on</strong>s (which will provide the typical examples <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> in moduli problems), the situati<strong>on</strong> is well-understood.<br />

Assume given a smooth morphism X → S, between smooth varieties or complex<br />

<strong>manifolds</strong>, such that all the fibers are elliptic curves. (This is what we call a smooth<br />

elliptic fibrati<strong>on</strong>.) Such a fibrati<strong>on</strong> may have no secti<strong>on</strong>s; however, there is a standard<br />

c<strong>on</strong>structi<strong>on</strong> (the relative Jacobian) which provides us with another smooth<br />

elliptic fibrati<strong>on</strong> J → S, fibered over the same base, such that all the elliptic fibers<br />

are the same (i.e. Js ∼ = Xs for all closed points s ∈ S). However, unlike the initial<br />

fibrati<strong>on</strong>, the relative Jacobian always has a secti<strong>on</strong>. The standard c<strong>on</strong>structi<strong>on</strong><br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!