10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Propositi<strong>on</strong> 4.2.3. Assume that pX has a secti<strong>on</strong> s : S → X. Then J and X are<br />

isomorphic as schemes or analytic spaces over S; an isomorphism ϕ : X → J can<br />

be chosen in such a way that the natural secti<strong>on</strong> s0 <str<strong>on</strong>g>of</str<strong>on</strong>g> pJ (that corresp<strong>on</strong>ds to OX<br />

<strong>on</strong> X) is mapped to s. The moduli problem is fine, under these circumstances, and<br />

a universal sheaf can be taken to be<br />

OX×SJ(Γ) ⊗ π ∗ XOX(−s),<br />

where Γ is the (scheme theoretic) graph <str<strong>on</strong>g>of</str<strong>on</strong>g> ϕ inside X ×S J, πX : X ×S J → X is<br />

the projecti<strong>on</strong>, and OX(−s) is the line bundle <strong>on</strong> X defined by the divisor −s, the<br />

image <str<strong>on</strong>g>of</str<strong>on</strong>g> the secti<strong>on</strong> s : S → X.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. This is nothing more than a relative versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>ding, well<br />

known statement for elliptic curves. This definiti<strong>on</strong> <strong>on</strong>ly works here for smooth<br />

elliptic fibrati<strong>on</strong>s (because Γ is a Cartier divisor). In the general case we’ll have<br />

to replace OX×SJ(Γ) with I ∨<br />

Γ , the dual <str<strong>on</strong>g>of</str<strong>on</strong>g> the ideal sheaf <str<strong>on</strong>g>of</str<strong>on</strong>g> Γ (which makes sense<br />

always).<br />

This identificati<strong>on</strong> allows us to give an explicit c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Jacobian <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

X → S. For simplicity we’ll work in the analytic category. Cover S with open<br />

sets Ui such that if we set Xi = X ×S Ui, the projecti<strong>on</strong> Xi → Ui admits a secti<strong>on</strong>.<br />

For each i, fix <strong>on</strong>ce and for all a secti<strong>on</strong> si : Ui → Xi. We identify si with its<br />

image in Xi, whenever there is no danger <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>fusi<strong>on</strong>. It is a divisor in Xi, whose<br />

restricti<strong>on</strong> to each fiber has degree 1.<br />

We digress to talk about translati<strong>on</strong>s <strong>on</strong> elliptic curves. Let C be a smooth<br />

curve <str<strong>on</strong>g>of</str<strong>on</strong>g> genus 1 over an algebraically closed field (i.e., an elliptic curve, but without<br />

the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an origin). On C there exists a natural identificati<strong>on</strong> between line<br />

bundles <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 0 and translati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> C (under the group law <strong>on</strong> C that is<br />

obtained by fixing some origin), which is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an origin.<br />

This identificati<strong>on</strong> can be described as follows: let L ∈ Pic ◦ (C); fixing an origin<br />

s0 ∈ C, L can be written in a unique way as L ∼ = OC(s0 − p) for some p ∈ C.<br />

The translati<strong>on</strong> associated to L , τL , is x ↦→ x + p for x ∈ C, where the operati<strong>on</strong><br />

is the <strong>on</strong>e given in the group law <str<strong>on</strong>g>of</str<strong>on</strong>g> C, with origin fixed at s0. It is a trivial check<br />

to see that τL is in fact independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> s0.<br />

C<strong>on</strong>versely, given a translati<strong>on</strong> τ, we can associate to it an element Lτ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pic ◦ (C) by the formula<br />

Lτ = τ ∗ (F ) ⊗ F −1 ,<br />

where F is some line bundle <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 1 <strong>on</strong> C. This is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the choice<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> F , and the operati<strong>on</strong>s L ↦→ τL , τ ↦→ Lτ are inverse to <strong>on</strong>e another. The important<br />

property <str<strong>on</strong>g>of</str<strong>on</strong>g> Lτ is the following: if F is a line bundle <strong>on</strong> C (not necessarily<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> degree 0), then we have<br />

τ ∗ F ∼ = F ⊗ L<br />

deg F<br />

τ<br />

A c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> this formula is that if F ∈ Pic ◦ (C), then τ ∗ F ∼ = F , so if C ′ is<br />

isomorphic to C via a translati<strong>on</strong>, there is a well defined noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pull-back <str<strong>on</strong>g>of</str<strong>on</strong>g> F<br />

.<br />

52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!