10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Follows from Lemma 1.3.4 and the structure theorem for Azumaya algebras<br />

(1.1.6).<br />

Theorem 1.3.7. Let A be an Azumaya algebra over X. Then the functor F<br />

defined above is an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g> between Mod(X, α) and Mod-A .<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let E be as before, and define G : Mod-A → Mod(X, α) by the formula<br />

G( · ) = · ⊗A E .<br />

(The tensor product over A is defined locally, as usual.)<br />

From the formulas<br />

E ⊗OX E ∨ ∼ = End(E ) ∼ = A<br />

and<br />

E ∨ ⊗A E ∼ = OX<br />

(see lemma 1.3.3) it follows that F and G are inverse to <strong>on</strong>e another. Taking global<br />

secti<strong>on</strong>s in Propositi<strong>on</strong> 1.3.6 and using Propositi<strong>on</strong> 1.2.12 we see that F is full and<br />

faithful, so it is an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g>.<br />

Remark 1.3.8. It is not hard to see that in fact all the functors we have defined in<br />

Propositi<strong>on</strong> 1.2.10 (⊗, Hom, f ∗ , f∗, f!) are compatible with this equivalence. So<br />

from now <strong>on</strong> we’ll just freely switch between the viewpoint that <str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> are<br />

“local <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> that d<strong>on</strong>’t quite match up” and the viewpoint that <str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g><br />

are “modules over an Azumaya algebra”. As an applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this, we prove the<br />

following theorem, which shows that <strong>on</strong> a proper scheme over C, <str<strong>on</strong>g>twisted</str<strong>on</strong>g> coherent<br />

<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> (in the étale topology) are the same as analytic <str<strong>on</strong>g>twisted</str<strong>on</strong>g> coherent <str<strong>on</strong>g>sheaves</str<strong>on</strong>g><br />

(in the Euclidean topology) <strong>on</strong> the associated analytic space.<br />

Theorem 1.3.9. Let X be a proper scheme over C, let h : X h → X be the natural<br />

c<strong>on</strong>tinuous map from the associated analytic space, and let α be an element <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Br(X), represented by an Azumaya algebra A . Let A h = h ∗ A , and let α h =<br />

a(A h ). Fix an α-lffr E such that End(E ) ∼ = A and an α h -lffr E h such that<br />

End(E h ) ∼ = A h . Let F be the functor<br />

defined by<br />

Then F is exact, its restricti<strong>on</strong><br />

F : Mod(X, α) → Mod(X h , α h )<br />

F ( · ) = h ∗ ( · ⊗OX E ∨ ) ⊗ A h E h .<br />

F |Coh : Coh(X, α) → Coh(X h , α h )<br />

is an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g>, and we have, for any F , G ∈ Coh(X, α)<br />

h ∗ Hom Mod(X,α)(F , G ) = Hom Mod(X h ,α h )(F (F ), G(G )).<br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!