10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let U ′′ be a refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> both U and U ′ . By first refining F to U ′′ , and<br />

then doing the c<strong>on</strong>structi<strong>on</strong> from the previous lemma we obtain a representati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> F <strong>on</strong> U ′ .<br />

Remark 1.2.7. We’ve already started abusing the notati<strong>on</strong>. By “representing an<br />

α-sheaf <strong>on</strong> an open cover U ′ ” we mean using the two functors (refinement and its<br />

inverse) to pass from the category <str<strong>on</strong>g>of</str<strong>on</strong>g> α-<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> the open cover U to the category<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> α-<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> the new open cover U ′ . In the sequel we’ll use these c<strong>on</strong>venti<strong>on</strong>s<br />

without making explicitly note <str<strong>on</strong>g>of</str<strong>on</strong>g> it.<br />

Lemma 1.2.8. If α and α ′ represent the same element <str<strong>on</strong>g>of</str<strong>on</strong>g> ˇ H2 (X, O∗ X ) then the<br />

<str<strong>on</strong>g>categories</str<strong>on</strong>g> Mod(X, α) and Mod(X, α ′ ) are equivalent. In particular, for any α<br />

that is trivial in ˇ H2 (X, O∗ X ) the category Mod(X, α) is equivalent to the category<br />

Mod(X) <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> X, and hence any α-sheaf <strong>on</strong> X can be viewed<br />

as a sheaf <strong>on</strong> X.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. α and α ′ represent the same element in ˇ H2 (X, O∗ X ) if and <strong>on</strong>ly if there exists<br />

a 1-cochain g with values in O∗ X such that α = α′ + ∂g. But then any α ′ -<str<strong>on</strong>g>twisted</str<strong>on</strong>g><br />

sheaf ({Fi}, {ϕij}) can be replaced by ({Fi}, {gijϕij}) to give an α-<str<strong>on</strong>g>twisted</str<strong>on</strong>g> sheaf,<br />

and this mapping is easily seen to be an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g>.<br />

Remark 1.2.9. Note that the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> the 1-cochain g matters: different choices<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> g give different equivalences between Mod(X, α) and Mod(X, α ′ ) (any two such<br />

equivalences differ by tensoring with a line bundle <strong>on</strong> X). In most cases it will not<br />

matter which particular choice <str<strong>on</strong>g>of</str<strong>on</strong>g> g we take, but when it matters we’ll menti<strong>on</strong><br />

explicitly which cochain we use.<br />

Propositi<strong>on</strong> 1.2.10. If F is an α-sheaf and G is an α ′ -sheaf, then F ⊗ G is an<br />

)). In particular, if<br />

αα ′ -sheaf and Hom(F , G ) is an α−1α ′ -sheaf (α, α ′ ∈ Č2 (X, O∗ X<br />

F and G are α-<str<strong>on</strong>g>sheaves</str<strong>on</strong>g>, then Hom(F , G ) is a sheaf. If f : Y → X is a morphism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ringed spaces, and F is an α-sheaf <strong>on</strong> X, then f ∗F is an f ∗α-sheaf <strong>on</strong> Y . If<br />

F is an f ∗α-sheaf <strong>on</strong> Y then f∗F is an α-sheaf <strong>on</strong> X. Finally, if f is an open<br />

immersi<strong>on</strong> and if F is an f ∗α-sheaf <strong>on</strong> Y then f!F is also an α-sheaf <strong>on</strong> X.<br />

(Recall the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the “extensi<strong>on</strong> by zero outside an open set” functor f! for<br />

<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> a topological space in [22, II, Ex. 1.19], as well as the corresp<strong>on</strong>ding<br />

<strong>on</strong>e for the étale topology in [30, II.3.18], where we replace the open immersi<strong>on</strong> by<br />

an étale open set f : U → X.)<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Refine the open cover enough to work for both F and G . Define F ⊗ G<br />

to be the gluing <str<strong>on</strong>g>of</str<strong>on</strong>g> Fi ⊗ Gi al<strong>on</strong>g ϕi ⊗ ψi (we take F = ({Fi}, {ϕi}) and G =<br />

({Gi}, {ψi})). This is obviously functorial and independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

open covers.<br />

For Hom(F , G ) glue Hom(Fi, Gi) al<strong>on</strong>g the isomorphisms<br />

Hom(Fi, Gi) ψi<br />

−→ Hom(Fi, Gj) (ϕ−1<br />

−→ Hom(Fj, Gj).<br />

i ) ∨<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!