10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 4<br />

Smooth Elliptic Fibrati<strong>on</strong>s<br />

In this chapter we c<strong>on</strong>sider the first n<strong>on</strong>-trivial example <str<strong>on</strong>g>of</str<strong>on</strong>g> an occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>twisted</str<strong>on</strong>g><br />

<str<strong>on</strong>g>sheaves</str<strong>on</strong>g>, in the c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>twisted</str<strong>on</strong>g> Poincaré bundle for an elliptic fibrati<strong>on</strong><br />

without a secti<strong>on</strong>. Here we <strong>on</strong>ly analyze the case <str<strong>on</strong>g>of</str<strong>on</strong>g> fibrati<strong>on</strong>s without singular<br />

fibers, and investigate the relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> our approach to Ogg-Shafarevich theory.<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the interesting phenomena will <strong>on</strong>ly occur when we’ll take into account<br />

fibrati<strong>on</strong>s with singular fibers, which we’ll do in Chapter 6, but this chapter should<br />

be viewed as a “birati<strong>on</strong>al analysis” <str<strong>on</strong>g>of</str<strong>on</strong>g> what comes later. Also, the results in this<br />

chapter serve to illustrate some <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>cepts introduced in the previous chapters.<br />

4.1 Elliptic Fibrati<strong>on</strong>s<br />

Definiti<strong>on</strong> 4.1.1. A smooth, projective morphism <str<strong>on</strong>g>of</str<strong>on</strong>g> smooth schemes (or analytic<br />

spaces), pX : X → S, such that for all s ∈ S, Xs (the fiber <str<strong>on</strong>g>of</str<strong>on</strong>g> pX over s) is a curve<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> genus <strong>on</strong>e over k(s), is called a smooth elliptic fibrati<strong>on</strong>.<br />

Note that although Xs has lots <str<strong>on</strong>g>of</str<strong>on</strong>g> points defined over k(s) when s is a closed<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> S, Xs might not have any point defined over k(s) when s is, for example,<br />

η, the generic point <str<strong>on</strong>g>of</str<strong>on</strong>g> S. This will be the main issue in the study <str<strong>on</strong>g>of</str<strong>on</strong>g> elliptic<br />

fibrati<strong>on</strong>s. In fact, most <str<strong>on</strong>g>of</str<strong>on</strong>g> the results that will be discussed in this chapter are<br />

c<strong>on</strong>cerned primarily with what happens around η, so that in many cases we’ll be<br />

able to remove the loci in S where “bad” things happen, and still get our results.<br />

Just in order to have a specific example in mind, we give here an example <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

smooth elliptic fibrati<strong>on</strong>.<br />

Example 4.1.2. Let X be a general bidegree (3, 3) hypersurface in P 2 × P 2 , and<br />

c<strong>on</strong>sider the map f : X → P 2 given by projecti<strong>on</strong> <strong>on</strong> the first factor <str<strong>on</strong>g>of</str<strong>on</strong>g> the product<br />

P 2 ×P 2 . Using Bertini’s theorem X is smooth and the general fiber <str<strong>on</strong>g>of</str<strong>on</strong>g> f is smooth.<br />

If ∆ ⊆ P 2 is the discriminant locus <str<strong>on</strong>g>of</str<strong>on</strong>g> this fibrati<strong>on</strong> (the locus over which the fiber<br />

is not smooth), and if S = X \ ∆, then XS = X × P 2 S → S is a smooth elliptic<br />

fibrati<strong>on</strong>.<br />

In this example we can in fact see that f does not have a rati<strong>on</strong>al secti<strong>on</strong>.<br />

Indeed, the closure <str<strong>on</strong>g>of</str<strong>on</strong>g> a rati<strong>on</strong>al secti<strong>on</strong> over all <str<strong>on</strong>g>of</str<strong>on</strong>g> P 2 would be a divisor D in<br />

50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!