10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Propositi<strong>on</strong> 2.3.4. Let f : X → Y be a proper morphism <str<strong>on</strong>g>of</str<strong>on</strong>g> schemes or analytic<br />

spaces, and let α, α ′ ∈ ˇ H2 (Y, O∗ Y ). Then there is a natural functorial homomorphism<br />

Rf∗RHom ·<br />

X(F · , G · ) −→ RHom ·<br />

Y (Rf∗F · , Rf∗G · )<br />

for F · ∈ D −<br />

coh (X, f ∗ α), G · ∈ D +<br />

coh (X, f ∗ α ′ ).<br />

Propositi<strong>on</strong> 2.3.5 (Projecti<strong>on</strong> Formula). Let f : X → Y be a proper morphism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> schemes or analytic spaces, and let α, α ′ ∈ ˇ H2 (Y, O∗ Y ). Then there is a<br />

natural functorial isomorphism<br />

Rf∗(F · ) L<br />

⊗Y G · ∼<br />

L<br />

·<br />

−→ Rf∗(F ⊗X Lf ∗ G · )<br />

for F · ∈ D −<br />

coh (X, f ∗ α) and G · ∈ D −<br />

coh (Y, α′ ).<br />

Propositi<strong>on</strong> 2.3.6. Let f : X → Y be a flat morphism <str<strong>on</strong>g>of</str<strong>on</strong>g> schemes or analytic<br />

spaces, and let α, α ′ ∈ ˇ H2 (Y, O∗ Y ). Then there is a natural functorial isomorphism<br />

f ∗ RHom ·<br />

Y (F · , G · ) ∼<br />

−→ RHom ·<br />

X(f ∗ F · , f ∗ G · )<br />

for F · ∈ D −<br />

coh (Y, α), G· ∈ D +<br />

coh (Y, α′ ). (We write f ∗ instead <str<strong>on</strong>g>of</str<strong>on</strong>g> Lf ∗ because it is<br />

an exact functor.)<br />

Propositi<strong>on</strong> 2.3.7. Let f : X → Y be a morphism <str<strong>on</strong>g>of</str<strong>on</strong>g> schemes or analytic spaces,<br />

and let α, α ′ ∈ ˇ H2 (Y, O∗ Y ). Then there is a natural functorial isomorphism<br />

for F · ∈ D −<br />

coh (Y, α), G· ∈ D −<br />

coh (Y, α′ ).<br />

Lf ∗ (F · ) L<br />

⊗X Lf ∗ (G · ) ∼<br />

−→ Lf ∗ L<br />

·<br />

(F ⊗Y G · )<br />

Propositi<strong>on</strong> 2.3.8. Let f : X → Y be a proper morphism <str<strong>on</strong>g>of</str<strong>on</strong>g> schemes or analytic<br />

spaces, and let α, α ′ ∈ ˇ H2 (Y, O∗ Y ). Then there is a natural functorial homomorphism<br />

F · → Rf∗Lf ∗ F ·<br />

for F · ∈ D −<br />

coh (Y, α) which gives rise by propositi<strong>on</strong> 2.3.4 to a natural functorial<br />

isomorphism<br />

Rf∗RHom · X(Lf ∗ F · , G · ) ∼<br />

−→ RHom · Y (F · , Rf∗G · )<br />

for F · ∈ D −<br />

coh (Y, α), G· ∈ D +<br />

coh (X, f ∗ α ′ ).<br />

Corollary 2.3.9 (Adjoint property <str<strong>on</strong>g>of</str<strong>on</strong>g> f∗ and f ∗ ). If f : X → Y is a proper<br />

morphism <str<strong>on</strong>g>of</str<strong>on</strong>g> schemes or analytic spaces, and if α ∈ ˇ H2 (Y, O∗ X ) then we have<br />

HomDcoh(X,f ∗ α)(Lf ∗ F · , G · ) ∼<br />

−→ HomDcoh(Y,α)(F · , Rf∗G · )<br />

for F · ∈ D −<br />

coh (Y, α), G· ∈ D +<br />

coh (X, f ∗ α ′ ). In other words Lf ∗ and Rf∗ are ad-<br />

joint functors from D −<br />

coh<br />

respectively.<br />

(Y, α) to D−<br />

coh (X, f ∗ α) and D +<br />

coh (X, f ∗ α) to D +<br />

coh<br />

35<br />

(Y, α),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!