10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. First, note that for any open set U ⊆ X we have Hom U(F |U, G |U) =<br />

Hom X(F , G )|U (where by restricti<strong>on</strong> we mean the usual pull-back via the inclusi<strong>on</strong><br />

U ↩→ X). Also, for any injective α-sheaf I <strong>on</strong> X we have I |U injective<br />

(Lemma 2.1.5). So we can use the pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> [22, III, 6.2] to c<strong>on</strong>clude that we have<br />

Ext i<br />

U(F |U, G |U) ∼ = Ext i<br />

X(F , G )|U.<br />

This allows us to reduce the problem to the case when X is affine (or Stein)<br />

and the cover U = {Ui} <strong>on</strong> which we are working c<strong>on</strong>tains X, as the open set U0.<br />

Since F and G are coherent, we c<strong>on</strong>clude that Ext i<br />

X(F0, G0) = 0 for i > n, where<br />

F0 and G0 are the <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> U0 in the representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> F and G . (Use the<br />

fact that for an affine scheme X = Spec A, and for coherent <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> F = ˜ M and<br />

G = Ñ, we have ExtiX(F<br />

, G ) = Ext i<br />

A(M, N)˜, and that a regular ring <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong><br />

n has global dimensi<strong>on</strong> n.) Since all the <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> that make up the <str<strong>on</strong>g>twisted</str<strong>on</strong>g> sheaf<br />

Ext i<br />

X(F , G ) are isomorphic to restricti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ext i<br />

X(F0, G0) to smaller open sets,<br />

we c<strong>on</strong>clude that they are all zero, hence Ext i<br />

X(F , G ) = 0.<br />

Propositi<strong>on</strong> 2.1.8. If X is smooth, <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> n, then any α-sheaf F has a<br />

finite flat resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> length at most n.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Using Lemma 2.1.2, c<strong>on</strong>struct a flat resoluti<strong>on</strong><br />

Gn<br />

ϕ<br />

−→ Gn−1 → · · · → G0 → F → 0<br />

by α-<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> that are free <strong>on</strong> stalks (see Remark 2.1.3). Over each open set in the<br />

cover U = {Ui} that we are working <strong>on</strong> we get a resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fi by <str<strong>on</strong>g>sheaves</str<strong>on</strong>g><br />

Gn,i → Gn−1,i → · · · → G0,i → Fi → 0,<br />

where each Gk,i is free <strong>on</strong> stalks. C<strong>on</strong>sidering the corresp<strong>on</strong>ding exact sequence <strong>on</strong><br />

stalks, and using Lemma 19.2, Theorem 19.2 and Theorem 2.5 in [29], we c<strong>on</strong>clude<br />

that the kernel <str<strong>on</strong>g>of</str<strong>on</strong>g> the map Gn,i → Gn−1,i is free <strong>on</strong> stalks. Therefore replacing the<br />

initial resoluti<strong>on</strong> by<br />

0 → Ker ϕ → Gn−1 → · · · → G0 → F → 0<br />

we obtain a resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> F all <str<strong>on</strong>g>of</str<strong>on</strong>g> whose terms are α-<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> that are free <strong>on</strong> stalks.<br />

This is the desired OX-flat resoluti<strong>on</strong>.<br />

Propositi<strong>on</strong> 2.1.9. Let f : Y → X be a proper morphism <str<strong>on</strong>g>of</str<strong>on</strong>g> schemes or analytic<br />

spaces, whose fibers have dimensi<strong>on</strong> at most n. Let α ∈ ˇ H2 (X, O∗ X ), and let F be<br />

a coherent f ∗α-<str<strong>on</strong>g>twisted</str<strong>on</strong>g> sheaf <strong>on</strong> Y . Then Rif∗F is a coherent α-<str<strong>on</strong>g>twisted</str<strong>on</strong>g> sheaf for<br />

all i, and is zero for i > n. (We define Rif∗ in the usual way, as the right <str<strong>on</strong>g>derived</str<strong>on</strong>g><br />

functors <str<strong>on</strong>g>of</str<strong>on</strong>g> the left exact functor f∗ : Mod(Y, f ∗α) → Mod(X, α).)<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Using Corollary 1.2.6 represent F as ({Fi}, {ϕij}) al<strong>on</strong>g an open cover<br />

{f −1 (Ui)}, for some cover {Ui} <str<strong>on</strong>g>of</str<strong>on</strong>g> X. Using Lemma 2.1.5, it is easy to see that<br />

computing R i f∗F in the category <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> (using <str<strong>on</strong>g>twisted</str<strong>on</strong>g> injective resoluti<strong>on</strong>s)<br />

gives the same result as gluing together R i f∗Fi al<strong>on</strong>g the isomorphisms<br />

R i f∗ϕij. Now the result follows from the corresp<strong>on</strong>ding results for un<str<strong>on</strong>g>twisted</str<strong>on</strong>g><br />

<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> schemes or analytic spaces (see [19, 3.2.1] and [2]).<br />

28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!