10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 2<br />

Derived Categories <str<strong>on</strong>g>of</str<strong>on</strong>g> Twisted<br />

Sheaves<br />

In this chapter we study the <str<strong>on</strong>g>derived</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> a scheme or<br />

analytic space, <str<strong>on</strong>g>derived</str<strong>on</strong>g> functors, and relati<strong>on</strong>ships am<strong>on</strong>g them. The theorems<br />

and pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s here are quite technical, and could be skipped <strong>on</strong> a first reading, the<br />

general idea being that all the results that hold in the un<str<strong>on</strong>g>twisted</str<strong>on</strong>g> case also hold in<br />

the <str<strong>on</strong>g>twisted</str<strong>on</strong>g> case, with minor modificati<strong>on</strong>s.<br />

2.1 Preliminary Results<br />

We start with a few remarks regarding injective and flat resoluti<strong>on</strong>s, and finiteness<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> these resoluti<strong>on</strong>s. Throughout this secti<strong>on</strong> X will denote a noetherian,<br />

separated scheme or analytic space, and α, α ′ , etc. are elements <str<strong>on</strong>g>of</str<strong>on</strong>g> H 2 (X, O ∗ X ).<br />

Lemma 2.1.1. Mod(X, α) has enough injectives for any α ∈ H 2 (X, O ∗ X ).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is the same as the <strong>on</strong>e in [22, III, 2.2], using the correct f∗.<br />

Lemma 2.1.2. Any α-sheaf is the quotient <str<strong>on</strong>g>of</str<strong>on</strong>g> an OX-flat α-sheaf.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let F be an α-sheaf <strong>on</strong> X. If U is any open set <str<strong>on</strong>g>of</str<strong>on</strong>g> X small enough to have<br />

α|U trivial, then OX,U (defined to be j!(OX|U), where j : U → X is the inclusi<strong>on</strong><br />

and j! is the <strong>on</strong>e defined in Propositi<strong>on</strong> 1.2.10) is an OX-flat α-sheaf, and any<br />

direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> such is flat. For every pair (U, f) where U is a small enough open set<br />

to have α|U trivial, and f is a secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> F over U, c<strong>on</strong>sider the map OX,U → F<br />

that over U takes the c<strong>on</strong>stant secti<strong>on</strong> “<strong>on</strong>e” to f (such a map can be found using<br />

the adjuncti<strong>on</strong> property <str<strong>on</strong>g>of</str<strong>on</strong>g> j! and j ∗ from Propositi<strong>on</strong> 1.2.13), and take the direct<br />

sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all these maps over all pairs (U, f). This is the desired surjecti<strong>on</strong>.<br />

Remark 2.1.3. The α-sheaf that surjects <strong>on</strong>to F , as c<strong>on</strong>structed in the pro<str<strong>on</strong>g>of</str<strong>on</strong>g>, has<br />

the property that the stalk at each point <str<strong>on</strong>g>of</str<strong>on</strong>g> each underlying local sheaf is a free<br />

module over the local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure sheaf at that point. We’ll call this<br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!