10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

DERIVED CATEGORIES OF TWISTED SHEAVES ON CALABI-YAU<br />

MANIFOLDS<br />

Andrei Horia Căldăraru, Ph.D.<br />

Cornell University 2000<br />

This dissertati<strong>on</strong> is primarily c<strong>on</strong>cerned with the study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>derived</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> Calabi-Yau <strong>manifolds</strong>. Twisted <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> occur naturally in a<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> problems, but the most important situati<strong>on</strong> where they are relevant<br />

is in the study <str<strong>on</strong>g>of</str<strong>on</strong>g> moduli problems <str<strong>on</strong>g>of</str<strong>on</strong>g> semistable <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> varieties. Although<br />

universal <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> may not exist as such, in many cases <strong>on</strong>e can c<strong>on</strong>struct them<br />

as <str<strong>on</strong>g>twisted</str<strong>on</strong>g> universal <str<strong>on</strong>g>sheaves</str<strong>on</strong>g>. In fact, the twisting is an intrinsic property <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

moduli problem under c<strong>on</strong>siderati<strong>on</strong>.<br />

A fundamental c<strong>on</strong>structi<strong>on</strong> due to Mukai associates to a universal sheaf a<br />

transform between the <str<strong>on</strong>g>derived</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> the original space and the <str<strong>on</strong>g>derived</str<strong>on</strong>g> category<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the moduli space, which <str<strong>on</strong>g>of</str<strong>on</strong>g>ten turns out to be an equivalence. In the<br />

present work we study what happens when the universal sheaf is replaced by a<br />

<str<strong>on</strong>g>twisted</str<strong>on</strong>g> <strong>on</strong>e. Under these circumstances we obtain a transform between the <str<strong>on</strong>g>derived</str<strong>on</strong>g><br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> the original space and the <str<strong>on</strong>g>derived</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>twisted</str<strong>on</strong>g><br />

<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> the moduli space.<br />

The dissertati<strong>on</strong> is divided into two parts. The first part presents the main<br />

technical tools: the Brauer group, <str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> and their <str<strong>on</strong>g>derived</str<strong>on</strong>g> category, as<br />

well as a criteri<strong>on</strong> for checking whether an integral transform is an equivalence<br />

(a so-called Fourier-Mukai transform). When this is the case we also obtain results<br />

regarding the cohomological transforms associated to the <strong>on</strong>es <strong>on</strong> the level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>derived</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g>.<br />

In the sec<strong>on</strong>d part we apply the theoretical results <str<strong>on</strong>g>of</str<strong>on</strong>g> the first part to a large<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant examples. We study smooth elliptic fibrati<strong>on</strong>s and the relati<strong>on</strong>ship<br />

between the theory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> and Ogg-Shafarevich theory, K3 surfaces,<br />

and elliptic Calabi-Yau threefolds. In particular, the study <str<strong>on</strong>g>of</str<strong>on</strong>g> elliptic Calabi-Yau<br />

threefolds leads us to an example which is likely to provide a counterexample to the<br />

generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Torelli theorem from K3 surfaces to threefolds. A similarity<br />

between the examples we study and certain examples c<strong>on</strong>sidered by Vafa-Witten<br />

and Aspinwall-Morris<strong>on</strong> shows up, although we can <strong>on</strong>ly guess the relati<strong>on</strong>ship<br />

between these two situati<strong>on</strong>s at the moment.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!