10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lemma 1.2.3. We <strong>on</strong>ly give a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> this result in the analytic category,<br />

for ease <str<strong>on</strong>g>of</str<strong>on</strong>g> notati<strong>on</strong>. The corresp<strong>on</strong>ding pro<str<strong>on</strong>g>of</str<strong>on</strong>g> in the étale category is entirely<br />

similar. Since U ′ = {U ′ j}j∈J is a refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> U = {Ui}i∈I we are given a map<br />

λ : J → I such that for each j ∈ J we have U ′ j ⊆ Uλ(j). If F is an α-<str<strong>on</strong>g>twisted</str<strong>on</strong>g> sheaf<br />

given <strong>on</strong> U, then there is a natural noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> F to U ′ : this is the pair<br />

({Fλ(j)|Uj }j∈J, {ϕλ(i)λ(j)|Ui∩Uj }j∈J),<br />

and this c<strong>on</strong>structi<strong>on</strong> clearly gives a refinement functor<br />

Mod(X, α, U) → Mod(X, α, U ′ ).<br />

In order to show that the refinement functor is an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g>, we<br />

would need to show that it is fully faithful and that every α-sheaf G given <strong>on</strong> U ′ is<br />

isomorphic to the refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> an α-sheaf F <strong>on</strong> U (see [12, p.84] or [9, p.26]). The<br />

first part (fully faithful) is an easy c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the morphisms,<br />

and it <strong>on</strong>ly remains to c<strong>on</strong>struct F .<br />

Let G = ({Gj}, {ψjk}) be an α-sheaf given al<strong>on</strong>g U ′ , and let Ui be any open set<br />

in U (i ∈ I). Then define the sheaf Fi <strong>on</strong> Ui as follows: if V ⊆ Ui is an open set,<br />

then<br />

Fi(V ) = {(sj)j∈J ∈ <br />

G (U ′ j ∩ V ) | ψjk(sk) = αiλ(j)λ(k)sj for all j, k ∈ J}.<br />

j∈J<br />

It is not hard to see that this definiti<strong>on</strong>, al<strong>on</strong>g with the obvious restricti<strong>on</strong> maps,<br />

makes Fi into a sheaf <strong>on</strong> Ui.<br />

(Note that what we are doing is in fact gluing the <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> Gj|Ui∩Uj al<strong>on</strong>g the<br />

isomorphisms<br />

α −1<br />

ψjk|Ui∩Uj∩Uk iλ(j)λ(k) .<br />

Using Lemma 1.2.4 we can do the same c<strong>on</strong>structi<strong>on</strong> in the étale setup.)<br />

{ϕii<br />

Define the isomorphisms ϕii ′ : Fi ′ → Fi that will make the collecti<strong>on</strong> ({Fi},<br />

′}) into an α-sheaf as follows:<br />

ϕii ′((sj)j∈J) = (tj)j∈J = (αii ′ λ(j)sj)j∈J<br />

over any open set V ⊆ Ui ∩ Uj. One now easily verifies that (tj) is indeed a secti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Fi over V , and that ϕii ′ is indeed an isomorphism. Finally, <strong>on</strong>e checks that<br />

ϕii ′ ◦ ϕi ′ i ′′ ◦ ϕi ′′ i = αii ′ i ′′,<br />

and thus that the collecti<strong>on</strong> ({Fi}, {ϕii ′}) is an α-sheaf whose refinement to U′ is<br />

isomorphic to G .<br />

Corollary 1.2.6. Let α ∈ Č2 (X, O ∗ X ) and let F be an α-sheaf given al<strong>on</strong>g an<br />

open cover U. Let U ′ be any open cover over which α can be represented. Then F<br />

can be represented by an α-sheaf <strong>on</strong> U ′ . In particular, let F be a sheaf (un<str<strong>on</strong>g>twisted</str<strong>on</strong>g>)<br />

whose support is c<strong>on</strong>tained in an open set U over which α is trivial. Then F can<br />

be also given the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> an α-sheaf.<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!