10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Definiti<strong>on</strong> 1.3.12. Let A be a ring. A right A-module is said to be an Aprogenerator<br />

if it satisfies the following two c<strong>on</strong>diti<strong>on</strong>s:<br />

1. F is finitely generated projective;<br />

2. F is a generator, i.e. the functor HomR(F, · ) : Mod-A → Ab is faithful.<br />

Theorem 1.3.13 (Fundamental Theorem <str<strong>on</strong>g>of</str<strong>on</strong>g> Morita Theory). Let A, B be<br />

rings. Then A ∼M B if and <strong>on</strong>ly if there exists an A-progenerator F such that<br />

B ∼ = EndA(F ).<br />

In this case, the functors<br />

Mod-A → Mod-B M ↦→ M ⊗A F ∨<br />

Mod-B → Mod-A N ↦→ N ⊗B F,<br />

are mutually inverse, where F ∨ = HomA(F, A), (note that F ∨ is naturally a left<br />

A-module and F is naturally a right B-module)<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. [27, Chap. 18, especially 18.24].<br />

Lemma 1.3.14. Let A, B and C be R-algebras over a commutative ring R, with<br />

C being flat as an R-module. If A ∼M B then A ⊗R C ∼M B ⊗R C.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Write B ∼ = EndA(F ) for an A-progenerator F . Then we have isomorphisms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-algebras:<br />

B ⊗R C ∼ = EndA(F ) ⊗R C ∼ = EndA⊗RC(F ⊗R C).<br />

To prove the last isomorphism, use [14, 2.10], noting that A ⊗R C is indeed a<br />

flat A-module (by the assumpti<strong>on</strong> that C is a flat R-module), and F is A-finitely<br />

presented being a progenerator.<br />

On the other hand, it is easy to see that F ⊗R C is a progenerator for A ⊗R C,<br />

using the fact that an A-module F is a progenerator if and <strong>on</strong>ly if F is a direct<br />

summand <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> copies <str<strong>on</strong>g>of</str<strong>on</strong>g> A and A is a direct summand <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

finite direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> copies <str<strong>on</strong>g>of</str<strong>on</strong>g> F ([27, 18.9]).<br />

Theorem 1.3.15. Two Azumaya algebras A and B over a commutative ring R are<br />

Morita equivalent if and <strong>on</strong>ly if there exist finitely generated projective R-modules F<br />

and F ′ such that A⊗R End(F ) ∼ = B ⊗R End(F ′ ). (We assume that A, B, F and F ′<br />

have positive rank <strong>on</strong> each comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> Spec R, to avoid trivial counterexamples.)<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Using [27, 18.11 and Ex. 2.24], we c<strong>on</strong>clude that any finitely generated<br />

projective R-module (with positive rank <strong>on</strong> each comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> Spec R) is an<br />

R-progenerator. Thus, <strong>on</strong>e implicati<strong>on</strong> is easy using Lemma 1.3.14 and Theorem<br />

1.3.13.<br />

Now let’s assume A ∼M B. Then, by Lemma 1.3.14, we have A ⊗R A ∨ ∼M<br />

B ⊗R A ∨ . Since A ⊗R A ∨ ∼ = EndR(A) we c<strong>on</strong>clude using Theorem 1.3.13 that<br />

B ⊗R A ∨ ∼M R. Now using again Theorem 1.3.13, we c<strong>on</strong>clude that<br />

B ⊗R A ∨ ∼ = EndR(F )<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!