10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

for some R-progenerator F . Tensoring this isomorphism over R with A, we get<br />

B ⊗R EndR(A) ∼ = A ⊗R EndR(F ),<br />

and thus taking F ′ = A we get the result.<br />

This shows that in the local situati<strong>on</strong> (over an affine scheme) the Brauer group<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a commutative ring R is precisely the group <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> Azumaya<br />

algebras under the tensor product operati<strong>on</strong>, modulo Morita equivalence.<br />

Unfortunately this does not generalize well to Azumaya algebras over a scheme,<br />

as the following example shows:<br />

Example 1.3.16. Work over the ground field C. Let X be a double cover <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

P 2 branched over a smooth sextic curve. Then it is known that X is a smooth<br />

K3 surface (see Chapter 5 for more informati<strong>on</strong> <strong>on</strong> K3 surfaces and their Brauer<br />

groups), and in this case we have<br />

Br(X) = T ∨<br />

X ⊗ Q/Z<br />

(Lemma 5.4.1), where TX is the transcendental lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> X, and T ∨<br />

X is the dual lattice<br />

to TX. There is a natural involuti<strong>on</strong> ι <strong>on</strong> X which interchanges the two sheets.<br />

The +1-eigenspace <str<strong>on</strong>g>of</str<strong>on</strong>g> the induced acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ι <strong>on</strong> H2 (X, Z) is precisely the algebraic<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> H2 (X, Z), and therefore ι acts by −1 <strong>on</strong> TX, and from Lemma 5.4.1 it also<br />

acts by −1 <strong>on</strong> Br(X).<br />

Let A be a sheaf <str<strong>on</strong>g>of</str<strong>on</strong>g> Azumaya algebras <strong>on</strong> X whose image [A ] in Br(X) is n<strong>on</strong>zero<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> order not equal to 2. Obviously ι induces an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g><br />

ι ∗ : Coh(X, A ) → Coh(X, ι ∗ A ).<br />

But we assumed that [ι ∗ A ] = −[A ] = [A ], so we have found Azumaya algebras<br />

A and ι ∗ A that are Morita equivalent, but not equal in the Brauer group.<br />

In view <str<strong>on</strong>g>of</str<strong>on</strong>g> this example it makes sense to state the following c<strong>on</strong>jecture:<br />

C<strong>on</strong>jecture 1.3.17. On a projective scheme X we have A ∼M B for <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Azumaya algebras A and B if and <strong>on</strong>ly if there exists an automorphism ϕ : X → X<br />

such that [A ] = [ϕ ∗ B] in Br(X).<br />

We’ll be interested in studying a coarser equivalence relati<strong>on</strong> <strong>on</strong> the group <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> Azumaya algebras, and that is the noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>derived</str<strong>on</strong>g> Morita<br />

equivalence (see the definiti<strong>on</strong> below). In the course <str<strong>on</strong>g>of</str<strong>on</strong>g> this work we’ll not go into<br />

the details <str<strong>on</strong>g>of</str<strong>on</strong>g> the theory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>derived</str<strong>on</strong>g> equivalences for n<strong>on</strong>-commutative rings (and<br />

tilting modules, tilting complexes, etc.) which is a whole subject in itself (see [38]<br />

for an introducti<strong>on</strong> to the problem and main results), but just point out a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> surprising results that are c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> the geometric theory we study here.<br />

24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!