10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.2 The Derived Category and Derived Functors<br />

Definiti<strong>on</strong> 2.2.1. The α-<str<strong>on</strong>g>twisted</str<strong>on</strong>g> <str<strong>on</strong>g>derived</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent <str<strong>on</strong>g>sheaves</str<strong>on</strong>g>, denoted by<br />

Db coh (X, α), is the bounded <str<strong>on</strong>g>derived</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> the abelian category Mod(X, α),<br />

with all cohomology α-<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> being coherent. In a similar fashi<strong>on</strong> we define<br />

D +<br />

coh (X, α), Kbcoh (X, α), K+<br />

coh (X, α), etc.<br />

Remark 2.2.2. For all the notati<strong>on</strong>s pertaining to the <str<strong>on</strong>g>derived</str<strong>on</strong>g> category, we use the<br />

notati<strong>on</strong>s set up in [23, I.4]. For <str<strong>on</strong>g>derived</str<strong>on</strong>g> functors, our reference is [23, I.5].<br />

Remark 2.2.3. Let X · be a complex such that H i (X · ) = 0 for all i > n0 for some<br />

n0, and let<br />

Y · = · · · → X n0−1 → Ker d n0 → 0 → · · · .<br />

Then it is easy to see that there is a natural injective map Y · → X · which is a<br />

quasi-isomorphism. Similarly, if H i (X · ) = 0 for all i < n0, then X · there is a<br />

natural surjective quasi-isomorphism X · → Y · , where<br />

Y · = · · · → 0 → Coker d n0−1 → X n0+1 → · · · .<br />

Let D be the full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> Dcoh(X, α) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes whose<br />

cohomology is zero except inside a bounded range. There is a natural functor<br />

Db coh (X, α) → D, and an easy applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> [23, I.3.3] and <str<strong>on</strong>g>of</str<strong>on</strong>g> the previous comments<br />

shows that this functor is an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g>. Therefore we’ll use<br />

the name “bounded complex” for either a complex which is zero outside a bounded<br />

range, or for <strong>on</strong>e whose cohomology is zero outside a bounded range, and the c<strong>on</strong>text<br />

will make clear which <strong>on</strong>e we mean (if it matters).<br />

Theorem 2.2.4. If X is a scheme or analytic space, α ∈ ˇ H2 (X, O∗ X ), and if f :<br />

Y → X is a morphism from another scheme or analytic space, then the following<br />

<str<strong>on</strong>g>derived</str<strong>on</strong>g> functors are defined:<br />

R Hom · : Dcoh(X, α) ◦ × D +<br />

coh (X, α) → Dcoh(Ab),<br />

RHom · : Dcoh(X, α) ◦ × D +<br />

coh (X, α′ ) → Dcoh(X, α −1 α ′ ),<br />

L<br />

⊗ : D −<br />

coh (X, α) × D−<br />

coh (X, α′ ) → D −<br />

coh (X, αα′ ),<br />

Lf ∗ : D −<br />

coh<br />

If f is also proper then<br />

is also defined.<br />

(X, α) → D−<br />

coh (Y, f ∗ α).<br />

Rf∗ : Dcoh(Y, f ∗ α) → Dcoh(X, α)<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. All these functors are defined exactly as in [23, II.2-II.4], using Propositi<strong>on</strong>s<br />

2.1.1 and 2.1.2 to ensure the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the respective <str<strong>on</strong>g>derived</str<strong>on</strong>g> functors.<br />

Note that we need properness <str<strong>on</strong>g>of</str<strong>on</strong>g> f for Rf∗ in order to insure that the cohomology<br />

<str<strong>on</strong>g>sheaves</str<strong>on</strong>g> are coherent.<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!