10.04.2013 Views

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

derived categories of twisted sheaves on calabi-yau manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 6<br />

Elliptic Calabi-Yau Threefolds<br />

In this chapter we pursue further the results <str<strong>on</strong>g>of</str<strong>on</strong>g> Chapter 4, to the case <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

elliptic fibrati<strong>on</strong>s with singular fibers. We are mainly interested in elliptic Calabi-<br />

Yau threefolds, and we <strong>on</strong>ly c<strong>on</strong>sider a number <str<strong>on</strong>g>of</str<strong>on</strong>g> generic examples here. By<br />

“generic” we mean that the singularities <str<strong>on</strong>g>of</str<strong>on</strong>g> the fibers are the simplest possible to<br />

still get a Calabi-Yau: the discriminant locus ∆ is a curve with <strong>on</strong>ly nodes and<br />

cusps as singularities, and the curve over the generic point <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ is a rati<strong>on</strong>al curve<br />

with <strong>on</strong>e node (I1). (See Secti<strong>on</strong> 6.1 for details <strong>on</strong> this topic.)<br />

We provide three examples <str<strong>on</strong>g>of</str<strong>on</strong>g> such fibrati<strong>on</strong>s in Secti<strong>on</strong> 6.2. The first <strong>on</strong>e is<br />

folklore, but the sec<strong>on</strong>d and third <strong>on</strong>es are, to the best <str<strong>on</strong>g>of</str<strong>on</strong>g> my knowledge, new.<br />

Given a fibrati<strong>on</strong> with the above properties, our first c<strong>on</strong>cern is understanding<br />

the relative Jacobian, which is defined as a relative moduli space (Secti<strong>on</strong> 6.4).<br />

In order to do this, we need to understand moduli spaces <str<strong>on</strong>g>of</str<strong>on</strong>g> semistable <str<strong>on</strong>g>sheaves</str<strong>on</strong>g><br />

<strong>on</strong> the fibers <str<strong>on</strong>g>of</str<strong>on</strong>g> X, and we do this in Secti<strong>on</strong> 6.3. Having d<strong>on</strong>e that, we go<br />

<strong>on</strong> to study the relative Jacobian in Secti<strong>on</strong> 6.4. We note here an interesting<br />

phenomen<strong>on</strong>: although the space X we start with is smooth, the relative Jacobian<br />

has singularities. These singularities can not be removed without losing the Calabi-<br />

Yau property (J has trivial can<strong>on</strong>ical bundle, but a small – or crepant – resoluti<strong>on</strong><br />

does not exist in general).<br />

The existence <str<strong>on</strong>g>of</str<strong>on</strong>g> these singularities would seem to prevent us from finding an<br />

equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>derived</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g> (since <str<strong>on</strong>g>derived</str<strong>on</strong>g> <str<strong>on</strong>g>categories</str<strong>on</strong>g> “detect smoothness”, as<br />

well as triviality <str<strong>on</strong>g>of</str<strong>on</strong>g> can<strong>on</strong>ical bundle), but by working in the analytic category we<br />

are able to bypass this problem. Indeed, in this category we find a small resoluti<strong>on</strong><br />

¯J <str<strong>on</strong>g>of</str<strong>on</strong>g> the singularities <str<strong>on</strong>g>of</str<strong>on</strong>g> J, and we are able to show that there exists a <str<strong>on</strong>g>twisted</str<strong>on</strong>g><br />

“pseudo-universal” sheaf <strong>on</strong> X ×S ¯ J (where S is the base <str<strong>on</strong>g>of</str<strong>on</strong>g> the fibrati<strong>on</strong>s). This<br />

<str<strong>on</strong>g>twisted</str<strong>on</strong>g> pseudo-universal sheaf is equal to the usual <str<strong>on</strong>g>twisted</str<strong>on</strong>g> universal sheaf over<br />

the stable part <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯ J (which equals the stable part <str<strong>on</strong>g>of</str<strong>on</strong>g> J), but also parametrizes some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the semistable <str<strong>on</strong>g>sheaves</str<strong>on</strong>g> <strong>on</strong> X, over the properly semistable part <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯ J (which is<br />

the resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the singular, semistable points <str<strong>on</strong>g>of</str<strong>on</strong>g> J). Using this pseudo-universal<br />

sheaf, we can define an integral transform, which turns out to be an equivalence.<br />

This is d<strong>on</strong>e in Secti<strong>on</strong> 6.5.<br />

We then note, in Secti<strong>on</strong> 6.6 another occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> the same surprising phe-<br />

85

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!