19.01.2015 Views

MOLPRO

MOLPRO

MOLPRO

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

33 SYMMETRY-ADAPTED INTERMOLECULAR PERTURBATION THEORY 246<br />

[6] A. Heßelmann and G. Jansen, Phys. Chem. Chem. Phys. 5, 5010 (2003).<br />

Density fitting DFT-SAPT (DF-DFT-SAPT):<br />

[7] A. Heßelmann, G. Jansen and M. Schütz, J. Chem. Phys. 122, 014103 (2005).<br />

(See also:<br />

K. Szalewicz, K. Patkowski and B. Jeziorski, Struct. Bond 116, 43 (2005)<br />

and references therein for a related approach to DFT-SAPT termed SAPT(DFT))<br />

33.2 First example<br />

A typical input for SAPT has the following form:<br />

r=5.6<br />

geometry={nosym; he1; he2,he1,r}<br />

basis=avqz<br />

!wf records<br />

ca=2101.2<br />

cb=2102.2<br />

!monomer A<br />

dummy,he2<br />

{hf; save,$ca}<br />

sapt;monomerA<br />

!monomer B<br />

dummy,he1<br />

{hf; start,atdens; save,$cb}<br />

sapt;monomerB<br />

!interaction contributions<br />

sapt;intermol,ca=$ca,cb=$cb<br />

Here the sapt;monomerA/B store some informations about the two monomers which are<br />

needed in the subsequent SAPT calculation invoked by sapt;intermol. The individual<br />

interaction energy terms are stored (in millihartree) in distinct variables and may be collected in<br />

arrays for producing potential energy surfaces. For example the input<br />

geometry={nosym; he1; he2,he1,r}<br />

basis=avtz<br />

!wf records<br />

ca=2101.2<br />

cb=2102.2<br />

!distances<br />

dist=[4.5,5.0,5.5,5.6,6.0,6.5,7.0]<br />

do i=1,#dist

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!