23.01.2015 Views

Download - Wolfram Research

Download - Wolfram Research

Download - Wolfram Research

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.9 Frequency-Domain Analysis of Linear Circuits 147<br />

In[2]:= lfMOSmodel =<br />

Circuit[<br />

Model[<br />

Name −> MOSFET,<br />

Selector −> LowFrequency,<br />

Scope −> Global,<br />

Ports −> {D, G, S, B},<br />

Parameters −> {gm, gmb, Gds},<br />

Definition −><br />

Netlist[<br />

{VCG, {G, S, D, S}, gm},<br />

{VCB, {B, S, D, S}, gmb},<br />

{GDS, {D, S}, Gds}<br />

]<br />

]<br />

]<br />

Out[2]= Circuit <br />

To store the model definition in the global subcircuit database we expand the Circuit object using<br />

the function ExpandSubcircuits (Section 3.4.1). The contents of the database can be inspected with<br />

the command GlobalSubcircuits (Section 3.3.4).<br />

In[3]:= ExpandSubcircuits[lfMOSmodel];<br />

GlobalSubcircuits[]<br />

Out[4]= MOSFET, LowFrequency<br />

2.9.2 Transfer Functions<br />

A CMOS Differential Amplifier<br />

The most basic application of linear symbolic circuit analysis is to compute transfer functions as<br />

analytic expressions of the circuit parameters and the Laplace frequency s. For instance, consider the<br />

single-ended CMOS differential amplifier stage shown in Figure 9.4 where we might be interested in<br />

computing the AC transfer function from the input voltage at node 1 to the output voltage across<br />

the load capacitor CL.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!