23.01.2015 Views

Download - Wolfram Research

Download - Wolfram Research

Download - Wolfram Research

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.9 Frequency-Domain Analysis of Linear Circuits 151<br />

In[9]:= tfcmos = Together[<br />

solcmos /. {V1 −> 1, V2 −> 0, IBIAS −> 0, VDD −> 0}]<br />

Out[9]=<br />

Gds$M2 Gds$M3 gm$M1 Gds$M3 gm$M1 gm$M2 Gds$M2 gm$M1 gm$M3 <br />

gm$M1 gm$M2 gm$M3 Gds$M2 gm$M1 gm$M4 gm$M1 gm$M2 gm$M4 <br />

Gds$M1 Gds$M2 Gds$M3 Gds$M1 Gds$M2 Gds$M4 Gds$M1 Gds$M3<br />

Gds$M4 Gds$M2 Gds$M3 Gds$M4 Gds$M2 Gds$M3 gm$M1 <br />

Gds$M3 Gds$M4 gm$M1 Gds$M1 Gds$M4 gm$M2 Gds$M3 Gds$M4 gm$M2 <br />

Gds$M1 Gds$M2 gm$M3 Gds$M1 Gds$M4 gm$M3 Gds$M2 Gds$M4 gm$M3 <br />

Gds$M2 gm$M1 gm$M3 Gds$M4 gm$M1 gm$M3 Gds$M4 gm$M2 gm$M3 <br />

Gds$M1 Gds$M2 gm$M4 Gds$M2 gm$M1 gm$M4 CL Gds$M1 Gds$M2 s <br />

CL Gds$M1 Gds$M3 s CL Gds$M2 Gds$M3 s CL Gds$M3 gm$M1 s <br />

CL Gds$M1 gm$M2 s CL Gds$M3 gm$M2 s CL Gds$M1 gm$M3 s <br />

CL Gds$M2 gm$M3 s CL gm$M1 gm$M3 s CL gm$M2 gm$M3 s<br />

Note that alternatively one could use the functions UpdateDesignPoint (Section 3.6.14) and<br />

ApplyDesignPoint (Section 3.6.13) to modify or insert design-point values.<br />

Computing Differential Gains<br />

Similarly, we can compute the differential gain of the amplifier by splitting up the input signal into<br />

two equal parts with opposite phase, i.e. V1 ⩵ and V2 ⩵ .<br />

In[10]:= diffgain = Together[<br />

solcmos /. {V1 −> 1/2, V2 −> −1/2, IBIAS −> 0, VDD −> 0}]<br />

Out[10]=<br />

Gds$M2 Gds$M3 gm$M1 Gds$M1 Gds$M3 gm$M2 2 Gds$M3 gm$M1 gm$M2 <br />

Gds$M2 gm$M1 gm$M3 Gds$M1 gm$M2 gm$M3 2 gm$M1 gm$M2 gm$M3 <br />

Gds$M2 gm$M1 gm$M4 Gds$M1 gm$M2 gm$M4 2 gm$M1 gm$M2 gm$M4 <br />

2 Gds$M1 Gds$M2 Gds$M3 Gds$M1 Gds$M2 Gds$M4 <br />

Gds$M1 Gds$M3 Gds$M4 Gds$M2 Gds$M3 Gds$M4 <br />

Gds$M2 Gds$M3 gm$M1 Gds$M3 Gds$M4 gm$M1 <br />

Gds$M1 Gds$M4 gm$M2 Gds$M3 Gds$M4 gm$M2 Gds$M1 Gds$M2<br />

gm$M3 Gds$M1 Gds$M4 gm$M3 Gds$M2 Gds$M4 gm$M3 <br />

Gds$M2 gm$M1 gm$M3 Gds$M4 gm$M1 gm$M3 Gds$M4 gm$M2 gm$M3 <br />

Gds$M1 Gds$M2 gm$M4 Gds$M2 gm$M1 gm$M4 CL Gds$M1 Gds$M2 s <br />

CL Gds$M1 Gds$M3 s CL Gds$M2 Gds$M3 s CL Gds$M3 gm$M1 s <br />

CL Gds$M1 gm$M2 s CL Gds$M3 gm$M2 s CL Gds$M1 gm$M3 s <br />

CL Gds$M2 gm$M3 s CL gm$M1 gm$M3 s CL gm$M2 gm$M3 s<br />

From this formula, the DC gain can be obtained by setting the complex Laplace frequency s ⩵ :<br />

In[11]:= diffgainDC = diffgain /. s −> 0<br />

Out[11]=<br />

Gds$M2 Gds$M3 gm$M1 Gds$M1 Gds$M3 gm$M2 2 Gds$M3 gm$M1 gm$M2 <br />

Gds$M2 gm$M1 gm$M3 Gds$M1 gm$M2 gm$M3 2 gm$M1 gm$M2 gm$M3 <br />

Gds$M2 gm$M1 gm$M4 Gds$M1 gm$M2 gm$M4 2 gm$M1 gm$M2 gm$M4 <br />

2 Gds$M1 Gds$M2 Gds$M3 Gds$M1 Gds$M2 Gds$M4 Gds$M1 Gds$M3<br />

Gds$M4 Gds$M2 Gds$M3 Gds$M4 Gds$M2 Gds$M3 gm$M1 <br />

Gds$M3 Gds$M4 gm$M1 Gds$M1 Gds$M4 gm$M2 Gds$M3 Gds$M4<br />

gm$M2 Gds$M1 Gds$M2 gm$M3 Gds$M1 Gds$M4 gm$M3 <br />

Gds$M2 Gds$M4 gm$M3 Gds$M2 gm$M1 gm$M3 Gds$M4 gm$M1 gm$M3 <br />

Gds$M4 gm$M2 gm$M3 Gds$M1 Gds$M2 gm$M4 Gds$M2 gm$M1 gm$M4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!