20.11.2012 Views

Contents Telektronikk - Telenor

Contents Telektronikk - Telenor

Contents Telektronikk - Telenor

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

where q(i) = 0 for i < 0 and i > M.<br />

The finite buffer model may be analysed<br />

using an iterative approach by solving<br />

the governing equations (2.37) numerically.<br />

However, we take advantage of the<br />

analysis in section 2.1 and we apply the<br />

same method as for the infinite buffer case.<br />

We introduce the generating functions<br />

Q M (z) =<br />

and by using (2.37) we get:<br />

where<br />

and<br />

M�<br />

q(i)z i ,<br />

i=0<br />

Q M z − 1<br />

(z) =<br />

zn − A(z)<br />

⎡<br />

n−1 �<br />

⎣ P M j z j − z M+n<br />

∞� 1 − zs 1 − z gM ⎤<br />

(s) ⎦<br />

j=0<br />

P M j =<br />

j�<br />

i=0<br />

p M i<br />

p M i = �<br />

i1+i2=i<br />

q(i1)a(i2)<br />

(2.38)<br />

is the probability that there are i cells in<br />

the system at the end of a slot, and is the<br />

probability that exactly s cells are lost<br />

during a slot.<br />

By examining (2.38) we see that for the<br />

major part of the queue-length distribution<br />

is of the same form as for the infinite<br />

buffer case:<br />

Q (2.39)<br />

M min[i,n−1] �<br />

(i) = P M j Θ(i − j)<br />

j=0<br />

The coefficients P j M’s are determined by<br />

the fact that (2.39) gives the queue length<br />

distribution also for i = M,...,M+n-1, and<br />

whence:<br />

n−1 �<br />

P M j Θ(M + k − j) =1; k =0, 1, ..., n − 1<br />

j=0<br />

s=1<br />

(2.40)<br />

The n equations (2.40) are non-singular<br />

and determine the P j M’s uniquely. For<br />

small buffers (2.40) is well suited to calculate<br />

the coefficients. However, to avoid<br />

numerical instability for larger M we<br />

expand (2.40) by taking partial expansion<br />

of the function Φ. After some algebra we<br />

get:<br />

�<br />

n−1<br />

P<br />

j=0<br />

M j<br />

= δ 1,l (n – A) (2.41)<br />

where<br />

A(rl,rs) =<br />

�<br />

r j<br />

�<br />

l + r<br />

s=n+1<br />

j � � �<br />

M<br />

rl<br />

sA(rl,rs)<br />

rs<br />

�� n<br />

�<br />

nA(rl) − rlA ′ (rl)<br />

nA(rs) − rsA ′ �<br />

(rs)<br />

k=1,k�=s<br />

� n<br />

k=1,k�=l<br />

�<br />

−1 rs − r<br />

(2.42)<br />

−1�<br />

�<br />

k<br />

� �<br />

−1<br />

rl − r−1<br />

k<br />

The generating function for the P M’s j in<br />

this case may be expressed as:<br />

n−1 �<br />

P M j x j<br />

j=0<br />

= (n – A)E 1 (I + W) -1 V(x) (2.43)<br />

where E1 is the n dimensional row vector<br />

E1 = (1,0,....,0), and W =(W(i,l)) is the<br />

n × n matrix:<br />

W (i, l) = �<br />

� �M+n−1 rl<br />

s=n+1<br />

(2.44)<br />

and V(x) is the n dimension column vector<br />

V(x) = (V l (x)):<br />

(2.45)<br />

The form of (2.41) is useful to determine<br />

the overall cell loss probability. Inserting<br />

z = 1 in (2.38) we obtain the mean volume<br />

of cells lost in a slot;<br />

∞�<br />

E[VL] = sg M (s) :<br />

(2.46)<br />

The volume lost can also be determined<br />

by direct arguments since we have that the<br />

rs<br />

� nA(rl) − rlA ′ (rl)<br />

nA(rs) − rsA ′ (rs)<br />

�n k=1,k�=l<br />

�<br />

Vl(rs)Vi(rs)<br />

(x − rk)<br />

Vl(x) = �n k=1,k�=l (rl − rk)<br />

s=1<br />

n−1 �<br />

E[VL] = P M j − (n − A)<br />

j=0<br />

lost volume of cells in a slot equals the<br />

offered load minus the carried load i.e.<br />

⎛<br />

n−1 �<br />

E[VL] =A − ⎝ jp M ⎞<br />

M�<br />

j + ⎠<br />

which equals (2.46).<br />

From (2.41) taking l = 1 we get the cell<br />

loss probability<br />

pL = E[VL]<br />

A<br />

evaluating we get<br />

j=0<br />

j=0 s=n+1<br />

(2.47)<br />

(2.48)<br />

For large M we expand (I + W) -1 in<br />

(2.48), and by taking only the first term<br />

in the expression for W we get the following<br />

simple approximate formula for<br />

the cell loss probability:<br />

where P is the product<br />

(2.49)<br />

(2.50)<br />

By using (2.14) and (2.15) we obtain the<br />

following integral expression for P:<br />

1<br />

P =<br />

(2.51)<br />

(n − A) (rn+1 − 1) exp(I)<br />

where I is the integral<br />

j=n<br />

np M j<br />

as:<br />

pL = −1<br />

n−1 �<br />

A<br />

�<br />

P M j r j �<br />

1<br />

sA(1,rs)<br />

(n − A)<br />

pL = −<br />

A E1(I + W ) −1 WE T 1<br />

(n − A) 2<br />

rs<br />

� M<br />

pL ≈<br />

A[rn+1A ′ (rn+1) − nA(rn+1)]<br />

� �M+n−1 1<br />

P<br />

rn+1<br />

2<br />

P =<br />

� n<br />

k=2 (rn+1 − rk)<br />

� n<br />

k=2<br />

(1 − rk)<br />

(rn+1) n<br />

I = 1<br />

�<br />

(rn+1 − 1)<br />

2πi |ζ|=r (rn+1 − ζ)(ζ − 1)<br />

�<br />

log 1 − A(ζ)<br />

ζn �<br />

dz<br />

(2.52)<br />

211

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!