20.11.2012 Views

Contents Telektronikk - Telenor

Contents Telektronikk - Telenor

Contents Telektronikk - Telenor

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Appendix B<br />

Evaluation of two<br />

logarithmic sums<br />

To derive (2.12) and (2.13) we denote<br />

n�<br />

S = log(z − rk)<br />

k=2<br />

(where we use theprincipal value of the<br />

logarithm). We also denote<br />

g(ζ) =1− A(ζ)<br />

.<br />

ζn The contour-integral<br />

�<br />

1<br />

log(ζ − z)<br />

2πi Γ<br />

g′ (ζ)<br />

g(ζ) dζ<br />

n�<br />

= log(z − rk) − n log z<br />

k=1<br />

(B.1)<br />

where Γ is a contour containing all the<br />

roots r1 = 1, r2 ,..., rn of g(ζ) and also<br />

contains ζ = 0 (which is a pole of multiplicity<br />

n for g(ζ)). Whence<br />

S = 1<br />

2πi<br />

�<br />

Γ<br />

log(ζ − z) g′ (ζ)<br />

g(ζ) dζ<br />

+ n log z – log(z – 1) (B.2)<br />

Depending on the location of z we<br />

choose some different contours. First we<br />

let C be the circle |ζ| = r with 1 < r < r n+1<br />

if |z| > r we choose the circle C as the<br />

contour Γ (see Figure 12).<br />

Integrating by parts we get<br />

�<br />

1<br />

log(ζ − z)<br />

2πi C<br />

g′ (ζ)<br />

g(ζ) dζ<br />

= 1<br />

[log(ζ − z)logg(ζ)]C<br />

2πi<br />

− 1<br />

�<br />

log g(ζ)<br />

2πi ζ − z dζ<br />

C<br />

(B.3)<br />

When ζ is moving around C the argument<br />

of logg(ζ) returns to its initial<br />

value. Therefore, [log(ζ-z) log g(ζ)]C = 0.<br />

Collecting the result above gives:<br />

S =log zn<br />

�<br />

1 log g(ζ)<br />

+<br />

z − 1 2πi C z − ζ dζ<br />

(B.4)<br />

If |z| < r we choose the contour<br />

Γ = C ∪ L1 ∪ L2 ∪ Cε (see Figure 13).<br />

On C integrating by parts we get (B.3),<br />

however, when ζ moves along C from z0 the argument of log (ζ - z) is increased by<br />

2π, while the argument of log g(ζ)<br />

returns to its starting value, so<br />

1<br />

2πi [log(ζ − z)logg(ζ)]C =logg(zo)<br />

On L 1 ∪ L 2 we have<br />

�<br />

1<br />

()dζ =<br />

2πiL1 ∪L2<br />

� z0<br />

1<br />

log(ζ − z)<br />

2πi z+ε<br />

g′ (ζ)<br />

g(ζ) dζ+<br />

� z+ε<br />

1<br />

log(ζ − z)<br />

2πi<br />

g′ (ζ)<br />

g(ζ) dζ<br />

z0<br />

On L2 the argument of log(ζ - z) has<br />

increased by 2π so that<br />

�<br />

1<br />

()dζ =<br />

2πiL1 ∪L2<br />

− 2πi<br />

� z0<br />

g<br />

2πi<br />

′ (ζ)<br />

dζ =<br />

g(ζ)<br />

z+ε<br />

– logg(z 0 ) + logg(z + ε) (B.5)<br />

On Cε we have ζ = z + εeiθ where θ<br />

moves from 2π to 0. (We also assume<br />

that z ≠ ri , i = 1,...,n.) When ε→0 we<br />

have<br />

�<br />

1<br />

log(ζ − z)<br />

2πi Cε<br />

(B.6)<br />

g′ (ζ)<br />

dζ ∼<br />

g(ζ)<br />

g ′ � 0<br />

(ζ) 1<br />

log(εe<br />

g(ζ) 2π 2π<br />

iθ )(εe iθ )dθ → 0<br />

Collecting the results above when ε→0 we get<br />

S =log zn �<br />

g(z) 1 log g(ζ)<br />

+<br />

z − 1 2πi C z − ζ dζ<br />

(B.7)<br />

Im(ζ)<br />

z<br />

x<br />

Figure 12 The contour Γ when |z| > r<br />

Im(ζ)<br />

z<br />

x<br />

C ε<br />

L 1<br />

L 2<br />

Figure 13 The contour Γ when |z| < r<br />

C<br />

z 0<br />

C<br />

Re(ζ)<br />

Re(ζ)<br />

219

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!