26.03.2017 Views

Materials for engineering, 3rd Edition - (Malestrom)

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

196<br />

<strong>Materials</strong> <strong>for</strong> <strong>engineering</strong><br />

where A 2(x) describes the variation of A 2 as a function of x.<br />

The value of Young’s modulus <strong>for</strong> the composite, E c , will be, <strong>for</strong> the unit<br />

cube, the ratio F/δ, i.e.<br />

1<br />

1 dx<br />

= [6.1]<br />

Ec ∫<br />

0<br />

E1 + ( E2 – E1 ) A2(x)<br />

We may thus derive an expression <strong>for</strong> E c <strong>for</strong> various volume fractions of<br />

any particular distribution of the embedded material <strong>for</strong> which A 2(x) is a welldefined<br />

function of x. We will consider three examples.<br />

Cubic inclusions<br />

Consider a composite material consisting of a volume fraction f of identical<br />

cubic inclusions of Young’s modulus E 2 in a matrix of modulus E 1 . In our<br />

unit cube of Fig. 6.4, one inclusion will be of volume f, so the edge length<br />

of the inclusion will be f 1/3 , and the area of one face, A 2 , will be f 2/3 . Thus,<br />

A 2(x) will be of the <strong>for</strong>m shown in Fig. 6.5.<br />

Substituting in equation [6.1], we obtain:<br />

∫<br />

1 d x<br />

dx<br />

= +<br />

E<br />

E<br />

1/3 E + ( E – E ) f<br />

c 0<br />

(1– f 1/3 )<br />

∫<br />

1<br />

1 (1– f )<br />

1 2 1<br />

2/3<br />

= 1 – 1/3<br />

f<br />

+<br />

E<br />

1<br />

1/3<br />

f<br />

E + ( E – E ) f<br />

1 2 1<br />

2/3<br />

=<br />

2/3<br />

E1 + ( E2 – E1) f – ( E2 – E1f<br />

2/3<br />

E [ E + ( E – E ) f ]<br />

1 1 2 1<br />

f 2/3<br />

A 2<br />

1 – f 1/3 f 1/3 x<br />

6.5 Inclusion area vs. distance graph <strong>for</strong> cubic inclusion.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!