18.04.2013 Views

Metallogenesis and Tectonics of the Russian Far East, Alaska, and ...

Metallogenesis and Tectonics of the Russian Far East, Alaska, and ...

Metallogenesis and Tectonics of the Russian Far East, Alaska, and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Tayozhnoe Ag Epi<strong>the</strong>rmal Vein Deposit<br />

The Tayozhnoe Ag epilhcrmal vein dcpasit (A.N. Rodjonov <strong>and</strong> o<strong>the</strong>rs, written commun., 1976; Pakhomova <strong>and</strong> o<strong>the</strong>rs,<br />

1997) consists <strong>of</strong> steeply-dipplng quartz veins which occur along northwest to north-south fractures whicb cut coarse-$rained,<br />

Early Cretaceous s<strong>and</strong>stone. The veins are 100 to 500 m long <strong>and</strong> O f to 2 rn thick, <strong>and</strong> also occur laterally under <strong>the</strong> contact<br />

between s<strong>and</strong>stone <strong>and</strong> overlying 50-m-thick section <strong>of</strong> Late Cretaceous felsic volcanic rocks. The ore minerals occur withln <strong>the</strong><br />

veins, <strong>and</strong> in metasomatic zones along <strong>the</strong> sub-horizontal contact behnreen veins <strong>and</strong> overlying volcanic rocks. The major Agbearing<br />

minerals are Ag sulfosalts md sulfides. Pyrltc <strong>and</strong> menopyrite are rare <strong>and</strong> formed before Ag-b&g mumah. In <strong>the</strong><br />

upper part <strong>of</strong> veins, Ag occurs in tebrahedrite, fieibergite, stephaaite, pyrargyribe, <strong>and</strong> polybasite. At middle depths, Ag occurs in<br />

acanthite <strong>and</strong> stephanite dominate, dong with menopyrite <strong>and</strong> allargenturn also occur, whereas acanthite dominates at depth. The<br />

deposit is medium size with an average grade <strong>of</strong> 50-2000 g/t Ag <strong>and</strong> 1 g/t Au. The deposit has been mined since <strong>the</strong> 1980's, <strong>and</strong> is<br />

assumed to be related to a Paleocene rhyolite volcan~plutonic assemblage.<br />

Verkhnezolotoe Porphyry Cu Deposit<br />

The Verkhnezolotoe porphyry Cu dcpxit (Orlovsky <strong>and</strong> o<strong>the</strong>rs, 1988) occurs at <strong>the</strong> northwest margin <strong>of</strong> a caldera whicb<br />

contains dike-like bodies <strong>of</strong> calc-akabe <strong>and</strong>esite porphyry which is interpreted as tongues <strong>of</strong> a dome-like subvolcanic intrusion.<br />

A stockwork occurs in a circular auraole <strong>of</strong> hydro<strong>the</strong>rmally altered rocks, witb dimensions<strong>of</strong> 200 m2, occurs over <strong>the</strong> inhusive<br />

dome. Successive alterations consist <strong>of</strong>: (1) q~-biotite-actinolite with pyroxene <strong>and</strong> epidote; (2) quartz-biotite-actinolite; (3)<br />

quartz-biotite-sericite <strong>and</strong> local cbtoritc; d (4) qlwtz-hydromica with carbonate. The stockwork indudes <strong>the</strong> first three<br />

alterations <strong>and</strong> consists <strong>of</strong> a thick network <strong>of</strong> quark-epidote-actinolite veinlets <strong>and</strong> lenses up to 2 to 3 cm thick with chalcopyrite,<br />

bornite, <strong>and</strong> pyrite. The stockwork is related fa a diwitc stock. Tke stockwork boundary coincidts with <strong>the</strong> aureole <strong>of</strong> <strong>the</strong> biotite<br />

alteration. An intensely-fractured breccia <strong>of</strong> mineralized siliceous silktone was encountered by drill holes which extend to 100 m<br />

depth. The ore minerals in breccia zones arc chalcopyrite, bornite, molybdenite, pyrite, rarely pyrrhotite, ci~banite, arsenopyrite,<br />

galena, <strong>and</strong> sphalerite. Carbonatc.chalcopyrite veiaIcto also occur. A m e <strong>of</strong> oxidized ore up to 20 to 30 in deep caps <strong>the</strong> deposit.<br />

The deposit is small with average grades <strong>of</strong> 3 g/t Au, 86 g/t Ag, 0.35-2.27% Cu, 0.6% Pb, <strong>and</strong> 0.26% Sn.<br />

Origin <strong>of</strong> <strong>and</strong> Tectonic Controls for<br />

Kema Metallogenic Belt<br />

The Cretaceous grauitoid rocks hosting <strong>the</strong> Kema metallogenic belt are part <strong>of</strong> <strong>the</strong> <strong>East</strong> Sikhote-Alin volcaaic-plutonic<br />

belt <strong>of</strong> Late Cretaceous <strong>and</strong> early Tertiary age (fig. 79) which is described in <strong>the</strong> above section <strong>the</strong> origin <strong>of</strong> <strong>the</strong> Taulrba<br />

metallogenic belt. O<strong>the</strong>r related, coeval mecaHogenic belts hosted in <strong>the</strong> <strong>East</strong>-Sikhote-Alina volcanic belt are <strong>the</strong> Lrzhkinsky,<br />

Lower Amur, Sergeevka (SG), <strong>and</strong> Taukha (TK)belts (fig. 79; Ublm 3,4). In <strong>the</strong> Kema metallogenic bit, <strong>the</strong> Cretaceous<br />

granitoid rocks <strong>of</strong> <strong>the</strong> <strong>East</strong> SikboteAlin belt intrude <strong>the</strong> Kana isl<strong>and</strong>-arc terrane which consists chiefly <strong>of</strong> distal turbidite deposits,<br />

<strong>and</strong>esite <strong>and</strong> basalt flows, breccia, tuft, <strong>and</strong> interbeddtd shallow-marine volcaniclastic rocks which contain Aptian to Albian<br />

pelecypods (Nokleberg <strong>and</strong> o<strong>the</strong>rs, 1994~). The volcanic rocks range mainly born tholeiitic <strong>and</strong> calc-alkah. In <strong>the</strong> Kern<br />

metallogenic belt, <strong>the</strong> volcanic rocks an mostly intermediate <strong>and</strong> moderately felsic, rhyolite <strong>and</strong> lesser basalt with K-Ar<br />

ages <strong>of</strong> about 55 to 60 Ma. la contrast to <strong>the</strong> nearby Taukiba metallogenic belt, <strong>the</strong> Kema metallogenic belt contains mainly Ag-<br />

Au epi<strong>the</strong>rmal deposits <strong>and</strong> is hosted in or near granitoid rocks <strong>of</strong> <strong>the</strong> <strong>East</strong> Sikhote-Ah belt where it intrudes <strong>the</strong> Cretaceous<br />

isl<strong>and</strong>-arc rocks <strong>of</strong> <strong>the</strong> Kema krrane.<br />

Luzhkinsky Metallogenic Belt <strong>of</strong> Sn Oreken,<br />

Sn Polymetallic Vein, Sn silica+ulfkle win,<br />

<strong>and</strong> Porphyry Sn Deposits (BeR LZ)<br />

Sou<strong>the</strong>rn Part <strong>of</strong> <strong>Russian</strong> Sou<strong>the</strong>ast<br />

The Luzhkinsky metallogenic belt <strong>of</strong> Sn greisun <strong>and</strong> So polymetallic vein, <strong>and</strong> porphyry Sn deposits (fig. 79; tabh 3,4)<br />

occurs in <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>Russian</strong> Sou<strong>the</strong>ast (Gonevchuyk <strong>and</strong> Kokorin, 1998). The belt is hosted in <strong>the</strong> Late Cretaceous<br />

<strong>and</strong> early Tertiary granitoid rocks <strong>of</strong> <strong>the</strong> <strong>East</strong> Sikhote-ALin volcanic-plutonic belt which intrude <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong><br />

Zhuravlesk-Tumnm turb~dite basin teme (Nokleberg <strong>and</strong> o<strong>the</strong>rs, 1994c, 1997~). The Luzhlunsky metallogenic belt contains one<br />

<strong>of</strong> <strong>the</strong> major group <strong>of</strong> Sn mlnes in <strong>the</strong> <strong>Russian</strong> Sou<strong>the</strong>ast (Vwilenko <strong>and</strong> o<strong>the</strong>rs, 1986; Radkevich, 1991; Gonevchuk <strong>and</strong> o<strong>the</strong>rs,<br />

1998). The significant deposlts in <strong>the</strong> belt are Sn silicatesulfide vein deposits at Arsenyevsoe, Khntstalnoe, <strong>and</strong> Vysokogorskoe<br />

(fig. 89), Sn polymetallic vein deposits at Dalnetayozhnoe, Iskra (fig. 90), Nizhnee, <strong>and</strong> Zimnee, a polymetall~c vein deposit at<br />

Yuzhnoe, porphyry Cu <strong>and</strong> porphyry Cu-Mo deposits al Lazurnoe, Malinovskoe, Verkhnezolotoe, <strong>and</strong> Zarechnae, porphyry Sn<br />

deposits at Yantarnoe <strong>and</strong> Zvezdnoe, <strong>and</strong> Sn-W greisen deposits at Tigrinoe <strong>and</strong> Zabytoe (table 4) (Nddeberg <strong>and</strong> ottwFs 19978,<br />

b, 1998; Gonevchuk <strong>and</strong> o<strong>the</strong>rs, 1998).<br />

Sn greisen <strong>and</strong> Sn polymetallic Vein DeposB<br />

The Sn greisen <strong>and</strong> Sn polymetallic vein deposits <strong>of</strong> <strong>the</strong> Luzhkinsky belt formed in <strong>the</strong> mid-l=retacews <strong>and</strong>early Tertiary<br />

between about 90 to 100 <strong>and</strong> 60 Ma (Gonevchuk <strong>and</strong> Korkorin, 1998). The older deposits formed in <strong>the</strong> early Late Cretwxm (90

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!