23.11.2014 Views

Single-Particle Electrodynamics - Assassination Science

Single-Particle Electrodynamics - Assassination Science

Single-Particle Electrodynamics - Assassination Science

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Our second piece of verification evidence lies with the observation that γ(τ)<br />

may alternatively be computed via γ(τ) ≡ d τ t(τ); this gives<br />

γ(τ) = 1 + 1 2 τ 2 ˙v 2 + 1 2 τ 3 ( ˙v·¨v) + 13<br />

24 τ 4 ˙v 4 + 1 8 τ 4¨v 2 + 1 6 τ 4 ( ˙v·... v)<br />

+ 1<br />

24 τ 5 ( ˙v·.... v) + 1<br />

12 τ 5 (¨v·... v) + 9 8 τ 5 ˙v 2 ( ˙v·¨v) + O(τ 6 ), (G.17)<br />

which is identical to (G.16). Now, upon reversion of t(τ), one finds<br />

τ(t) = t − 1 6 t3 ˙v 2 − 1 8 t4 ( ˙v·¨v) − 1 40 t5 ˙v 4 − 1<br />

40 t5¨v 2 − 1<br />

30 t5 ( ˙v·... v)<br />

− 1<br />

144 t6 ( ˙v·.... v) − 1 t6 (¨v·...<br />

v) − 1 72 24 t6 ˙v 2 ( ˙v·¨v) + O(t 7 ). (G.18)<br />

Using (G.18) in (G.15), we thus find<br />

v(t) = t ˙v + 1 2 t2¨v + 1 6 t3 ...<br />

v + 1 24 t4 ....<br />

v + O(t 5 ),<br />

which of course defines ˙v, ¨v, ... v and .... v; this completes the verification of the<br />

input expressions.<br />

G.6.3<br />

Trajectories of rigid body constituents<br />

We now compute the trajectory of the constituent r. This is given by<br />

z α r (τ) = z α (τ) + ∆z α r (τ),<br />

(G.19)<br />

where<br />

where u(0) = r, and<br />

∆t r (τ) = γ(τ) ( u(τ)·v(τ) ) ,<br />

∆z r (τ) = u(τ) +<br />

γ2 (τ) ( )<br />

u(τ)·v(τ) v(τ), (G.20)<br />

γ(τ) + 1<br />

d τ u(τ) =<br />

γ3 (τ)<br />

γ(τ) + 1 u(τ)×( v(τ)× ˙v(τ) ) .<br />

(G.21)<br />

447

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!