01.02.2015 Views

Producer Price Index Manual: Theory and Practice ... - METAC

Producer Price Index Manual: Theory and Practice ... - METAC

Producer Price Index Manual: Theory and Practice ... - METAC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Producer</strong> <strong>Price</strong> <strong>Index</strong> <strong>Manual</strong><br />

is, it can approximate an arbitrary twice continuously<br />

differentiable linearly homogeneous functional<br />

form to the second order.<br />

17.45 Define the quadratic mean of order r quantity<br />

index Q r by<br />

r 0 1 0 1<br />

(17.23) Q ( p , p , q , q )<br />

where<br />

2<br />

1<br />

2<br />

1<br />

1<br />

r<br />

r<br />

1<br />

−r<br />

−r<br />

n<br />

n<br />

0⎛ q ⎞<br />

i<br />

1⎛ q ⎞<br />

i<br />

si<br />

s<br />

0 i 0<br />

i= 1 qi<br />

i=<br />

1 qi<br />

⎡ ⎤ ⎡ ⎤<br />

≡ ⎢ ⎜ ⎟ ⎥ ⎢ ⎜ ⎟ ⎥<br />

⎢<br />

⎣ ⎝ ⎠ ⎥<br />

⎦<br />

⎢<br />

⎣ ⎝ ⎠ ⎥<br />

⎦<br />

∑ ∑ ,<br />

N<br />

t t t t t<br />

i i i i i<br />

i=<br />

1<br />

s = pq ∑ pq is the period t revenue<br />

share for output i as usual. It can be verified that<br />

when r = 2, Q r simplifies into Q F , the Fisher ideal<br />

quantity index.<br />

17.46 Using exactly the same techniques as were<br />

used in Section B.3, it can be shown that Q r is exact<br />

for the aggregator function f r defined by equation<br />

(17.22); i.e.,<br />

(17.24) Q r (p 0 ,p 1 ,q 0 ,q 1 r 1 r 0<br />

) = f ( q ) f ( q )<br />

= .<br />

Thus, under the assumption that the producer engages<br />

in revenue maximizing behavior during periods<br />

0 <strong>and</strong> 1 <strong>and</strong> has technologies that satisfy a<br />

linearly homogeneous aggregator function for outputs<br />

17 where the output aggregator function f(q) is<br />

defined by eqaution (17.22), then the quadratic<br />

mean of order r quantity index Q F is exactly equal<br />

to the true quantity index, f r (q 1 ) / f r (q 0 ). 18 Since<br />

Q r is exact for f r , <strong>and</strong> f r is a flexible functional<br />

form, the quadratic mean of order r quantity index<br />

Q r is a superlative index for each r ≠ 0. Thus, there<br />

are an infinite number of superlative quantity indices.<br />

17.47 For each quantity index Q r , the product<br />

test in equation (15.3) can be used to define the<br />

corresponding implicit quadratic mean of order r<br />

price index P r *:<br />

17 This method for justifying aggregation over commodities<br />

is due to Shephard (1953, pp. 61–71). It is assumed that<br />

f(q) is an increasing ,positive, <strong>and</strong> convex function of q for<br />

positive q. Samuelson <strong>and</strong> Swamy (1974) <strong>and</strong> Diewert<br />

(1980, pp. 438–42) also develop this approach to index<br />

number theory.<br />

18 See Diewert (1976; 130).<br />

(17.25) P r *(p 0 ,p 1 ,q 0 ,q 1 )<br />

≡<br />

N<br />

∑<br />

i=<br />

1<br />

( , , , )<br />

p q ⎡<br />

⎣<br />

p q Q p p q q<br />

1 1 0 0 r 0 1 0 1<br />

i i i i<br />

⎤<br />

⎦<br />

r<br />

( ) ( )<br />

r* 1 * 0<br />

= r p r p ,<br />

where r r * is the unit revenue function that corresponds<br />

to the aggregator function f r defined by<br />

equation (17.22). For each r ≠0, the implicit quadratic<br />

mean of order r price index P r * is also a superlative<br />

index.<br />

17.48 When r = 2, Q r defined by equation<br />

(17.23) simplifies to Q F , the Fisher ideal quantity<br />

index, <strong>and</strong> P r * defined by equation (17.25) simplifies<br />

to P F , the Fisher ideal price index. When r = 1,<br />

Q r defined by equation (17.23) simplifies to:<br />

(17.26) Q 1 (p 0 ,p 1 ,q 0 ,q 1 )<br />

12<br />

1<br />

12<br />

1<br />

1 1<br />

−<br />

−<br />

∑<br />

n<br />

n<br />

0⎛ q ⎞<br />

i<br />

1 qi<br />

s ∑<br />

⎛ ⎞<br />

i<br />

s<br />

0 i 0<br />

i= 1 qi<br />

i=<br />

1 qi<br />

⎡ ⎤ ⎡ ⎤<br />

≡ ⎢ ⎜ ⎟ ⎥ ⎢ ⎜ ⎟ ⎥<br />

⎢⎣ ⎝ ⎠ ⎥⎦ ⎢⎣ ⎝ ⎠ ⎥⎦<br />

=<br />

N<br />

1 1<br />

12<br />

1<br />

12<br />

−1<br />

∑ pq<br />

i i 1 1<br />

−<br />

⎡ N N<br />

1<br />

0 0⎛ i<br />

q ⎞ ⎤ ⎡<br />

i 1 1⎛ q ⎞ ⎤<br />

=<br />

i<br />

⎢<br />

N ∑pq<br />

i i ⎜ pq<br />

0 ⎟ ⎥ ⎢∑<br />

i i ⎜ 0 ⎟ ⎥<br />

0 0 i= 1 qi<br />

i=<br />

1 qi<br />

pq<br />

⎢ ⎝ ⎠ ⎥ ⎢ ⎝ ⎠ ⎥<br />

∑ ⎣ ⎦ ⎣ ⎦<br />

i i<br />

i=<br />

1<br />

N<br />

1 1<br />

∑ pq<br />

i i N<br />

1 1<br />

0 0 1<br />

12<br />

N<br />

−<br />

1 0 1<br />

−12<br />

i=<br />

1 ⎡ ⎤ ⎡ ⎤<br />

=<br />

N ⎢∑pi ( qi qi ) ⎥ ⎢∑pi ( qi qi<br />

) ⎥<br />

0 0 i= 1 i=<br />

1<br />

pq ⎣ ⎦ ⎣ ⎦<br />

∑ i i<br />

i=<br />

1<br />

N<br />

1 1<br />

∑ pq<br />

i i N<br />

1 0 1<br />

12<br />

N<br />

0 0 1<br />

12<br />

i=<br />

1<br />

=<br />

N ∑pi ( qi qi ) ∑pi ( qi qi<br />

)<br />

0 0 i= 1 i=<br />

1<br />

∑ pq<br />

i i<br />

i=<br />

1<br />

N<br />

1 1<br />

∑ pq<br />

i i<br />

i=<br />

1<br />

0 1 0 1<br />

= ⎡PW<br />

( p , p , q , q<br />

N<br />

) ⎤<br />

0 0 ⎣ ⎦<br />

,<br />

∑ pq<br />

i i<br />

i=<br />

1<br />

⎡ ⎤ ⎡ ⎤<br />

⎢ ⎥ ⎢ ⎥<br />

⎣ ⎦ ⎣ ⎦<br />

where P W is the Walsh price index defined previously<br />

by equation (15.19) in Chapter 15. Thus P 1 *<br />

is equal to P W , the Walsh price index, <strong>and</strong> hence it<br />

is also a superlative price index.<br />

448

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!