31.05.2015 Views

NcXHF

NcXHF

NcXHF

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

BIOMARKER-DRIVEN THERAPY IN MYELOMA<br />

[carboxy-terminal telopeptide of type-I collagen (ICTP), aminoterminal<br />

collagen type-I telopeptide (NTx), and deoxypyridinoline<br />

(Dpd)] in MGUS and multiple myeloma. Eur J Haematol. 2002;69:<br />

37-42.<br />

52. Abildgaard N, Brixen K, Kristensen JE, et al. Comparison of fıve biochemical<br />

markers of bone resorption in multiple myeloma: elevated<br />

pre-treatment levels of S-ICTP and U-Ntx are predictive for early progression<br />

of the bone disease during standard chemotherapy. Br J<br />

Haematol. 2003;120:235-242.<br />

53. Jakob C, Sterz J, Liebisch P, et al. Incorporation of the bone marker<br />

carboxy-terminal telopeptide of type-1 collagen improves prognostic<br />

information of the International Staging System in newly diagnosed<br />

symptomatic multiple myeloma. Leukemia. 2008;22:1767-1772.<br />

54. Schütt P, Rebmann V, Brandhorst D, et al. The clinical signifıcance of<br />

soluble human leukocyte antigen class-I, ICTP, and RANKL molecules<br />

in multiple myeloma patients. Hum Immunol. 2008;69:79-87.<br />

55. Christenson RH. Biochemical markers of bone metabolism: an overview.<br />

Clin Biochem. 1997;30:573-593.<br />

56. Terpos E, Politou M, Szydlo R, et al. Autologous stem cell transplantation<br />

normalizes abnormal bone remodeling and sRANKL/osteoprotegerin<br />

ratio in patients with multiple myeloma. Leukemia. 2004;18:1420-<br />

1426.<br />

57. Dowling P, Hayes C, Ting KR, et al. Identifıcation of proteins found to<br />

be signifıcantly altered when comparing the serum proteome from Multiple<br />

Myeloma patients with varying degrees of bone disease. BMC<br />

Genomics. 2014;15:904.<br />

58. Heuck CJ, Mehta J, Bhagat T, et al. Myeloma is characterized by stagespecifıc<br />

alterations in DNA methylation that occur early during myelomagenesis.<br />

J Immunol. 2013;190:2966-2975.<br />

59. Walker BA, Wardell CP, Chiecchio L, et al. Aberrant global methylation<br />

patterns affect the molecular pathogenesis and prognosis of multiple<br />

myeloma. Blood. 2011;117:553-562.<br />

60. Kaiser MF, Johnson DC, Wu P, et al. Global methylation analysis identifıes<br />

prognostically important epigenetically inactivated tumor suppressor<br />

genes in multiple myeloma. Blood. 2013;122:219-226.<br />

61. Marango J, Shimoyama M, Nishio H, et al. The MMSET protein is a<br />

histone methyltransferase with characteristics of a transcriptional corepressor.<br />

Blood. 2008;111:3145-3154.<br />

62. Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes<br />

associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S<br />

A. 2008;105:12885-12890.<br />

63. Dimopoulos K, Gimsing P, Grønbæk K. The role of epigenetics in the<br />

biology of multiple myeloma. Blood Cancer J. 2014;4:e207.<br />

64. Pérez-Persona E, Vidriales MB, Mateo G, et al. New criteria to identify<br />

risk of progression in monoclonal gammopathy of uncertain signifıcance<br />

and smoldering multiple myeloma based on multiparameter flow<br />

cytometry analysis of bone marrow plasma cells. Blood. 2007;110:2586-<br />

2592.<br />

65. Dispenzieri A, Kyle RA, Katzmann JA, et al. Immunoglobulin free light<br />

chain ratio is an independent risk factor for progression of smoldering<br />

(asymptomatic) multiple myeloma. Blood. 2008;111:785-789.<br />

66. Rajkumar SV, Gupta V, Fonseca R, et al. Impact of primary molecular<br />

cytogenetic abnormalities and risk of progression in smoldering multiple<br />

myeloma. Leukemia. 2013;27:1738-1744.<br />

67. Neben K, Jauch A, Hielscher T, et al. Progression in smoldering myeloma<br />

is independently determined by the chromosomal abnormalities<br />

del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J Clin Oncol.<br />

2013;31:4325-4332.<br />

68. Davies FE, Dring AM, Li C, et al. Insights into the multistep transformation<br />

of MGUS to myeloma using microarray expression analysis.<br />

Blood. 2003;102:4504-4511.<br />

69. Zhan F, Hardin J, Kordsmeier B, et al. Global gene expression profıling<br />

of multiple myeloma, monoclonal gammopathy of undetermined signifıcance,<br />

and normal bone marrow plasma cells. Blood. 2002;99:1745-<br />

1757.<br />

70. Zhan F, Barlogie B, Arzoumanian V, et al. Gene-expression signature of<br />

benign monoclonal gammopathy evident in multiple myeloma is linked<br />

to good prognosis. Blood. 2007;109:1692-1700.<br />

71. Dhodapkar MV, Sexton R, Waheed S, et al. Clinical, genomic, and imaging<br />

predictors of myeloma progression from asymptomatic monoclonal<br />

gammopathies (SWOG S0120). Blood. 2014;123:78-85.<br />

72. Bhutani M, Turkbey B, Tan E, et al. Bone marrow angiogenesis in myeloma<br />

and its precursor disease: a prospective clinical trial. Leukemia.<br />

2014;28:413-416.<br />

73. Hillengass J, Fechtner K, Weber MA, et al. Prognostic signifıcance of<br />

focal lesions in whole-body magnetic resonance imaging in patients<br />

with asymptomatic multiple myeloma. J Clin Oncol. 2010;28:1606-1610.<br />

74. Merz M, Hielscher T, Wagner B, et al. Predictive value of longitudinal<br />

whole-body magnetic resonance imaging in patients with smoldering<br />

multiple myeloma. Leukemia. 2014;28:1902-1908.<br />

75. Chng WJ, Dispenzieri A, Chim CS, et al. IMWG consensus on risk stratifıcation<br />

in multiple myeloma. Leukemia. 2014;28:269-277.<br />

76. Kumar SK, Mikhael JR, Buadi FK, et al. Management of newly diagnosed<br />

symptomatic multiple myeloma: updated Mayo Stratifıcation of<br />

Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines.<br />

Mayo Clin Proc. 2009;84:1095-1110.<br />

77. Mikhael JR, Dingli D, Roy V, et al. Management of newly diagnosed<br />

symptomatic multiple myeloma: updated Mayo Stratifıcation of Myeloma<br />

and Risk-Adapted Therapy (mSMART) consensus guidelines<br />

2013. Mayo Clin Proc. 2013;88:360-376.<br />

78. Moreau P, Garban F, Attal M, et al. Long-term follow-up results of<br />

IFM99-03 and IFM99-04 trials comparing nonmyeloablative allotransplantation<br />

with autologous transplantation in high-risk de novo multiple<br />

myeloma. Blood. 2008;112:3914-3915.<br />

79. Auner HW, Szydlo R, van Biezen A, et al. Reduced intensityconditioned<br />

allogeneic stem cell transplantation for multiple myeloma<br />

relapsing or progressing after autologous transplantation: a study by the<br />

European Group for Blood and Marrow Transplantation. Bone Marrow<br />

Transplant. 2013;48:1395-1400.<br />

80. Boyd KD, Pawlyn C, Morgan GJ, et al. Understanding the molecular<br />

biology of myeloma and its therapeutic implications. Expert Rev Hematol.<br />

2012;5:603-617.<br />

81. Landgren O, Morgan GJ. Biologic frontiers in multiple myeloma: from<br />

biomarker identifıcation to clinical practice. Clin Cancer Res. 2014;20:<br />

804-813.<br />

82. McShane LM, Altman DG, Sauerbrei W, et al. REporting recommendations<br />

for tumor MARKer prognostic studies (REMARK). Nat Clin Pract<br />

Urol. 2005;2:416-422.<br />

asco.org/edbook | 2015 ASCO EDUCATIONAL BOOK<br />

e503

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!