31.05.2015 Views

NcXHF

NcXHF

NcXHF

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

RETHINKING TREATMENT FOR CHONDROSARCOMA: A ROLE FOR IDH INHIBITION?<br />

drosarcoma and is associated with adverse outcome. Am J Surg Pathol.<br />

2001;25:1520-1527.<br />

69. Grignani G, Palmerini E, Stacchiotti S, et al. A phase 2 trial of imatinib<br />

mesylate in patients with recurrent nonresectable chondrosarcomas<br />

expressing platelet-derived growth factor receptor- or -: an Italian<br />

Sarcoma Group study. Cancer. 2011;117:826-831.<br />

70. Tsuda M, Takahashi S, Takahashi Y, et al. Transcriptional coactivators<br />

CREB-binding protein and p300 regulate chondrocytespecifıc<br />

gene expression via association with Sox9. J Biol Chem. 2003;<br />

278:27224-27229.<br />

71. Liu CJ, Prazak L, Fajardo M, et al. Leukemia/lymphoma-related factor,<br />

a POZ domain-containing transcriptional repressor, interacts with histone<br />

deacetylase-1 and inhibits cartilage oligomeric matrix protein<br />

gene expression and chondrogenesis. J Biol Chem. 2004;279:47081-<br />

47091.<br />

72. Villar-Garea A, Esteller M. Histone deacetylase inhibitors: understanding<br />

a new wave of anticancer agents. Intl J Cancer. 2004;112:171-<br />

178.<br />

73. Sakimura R, Tanaka K, Nakatani F, et al. Antitumor effects of histone<br />

deacetylase inhibitor on Ewing’s family tumors. Intl J Cancer. 2005;<br />

116:784-792.<br />

74. Sakimura R, Tanaka K, Yamamoto S, et al. The effects of histone<br />

deacetylase inhibitors on the induction of differentiation in chondrosarcoma<br />

cells. Clin Cancer Res. 2007;13:275-282.<br />

75. Leonardi R, Subramanian C, Jackowski S, et al. Cancer-associated isocitrate<br />

dehydrogenase mutations inactivate NADPH-dependent reductive<br />

carboxylation. J Biol Chem. 2012;287:14615-14620.<br />

76. Geisbrecht BV, Gould SJ. The human PICD gene encodes a cytoplasmic<br />

and peroxisomal NADP()-dependent isocitrate dehydrogenase.<br />

J Biol Chem. 1999;274:30527-30533.<br />

77. Yoshihara T, Hamamoto T, Munakata R, et al. Localization of cytosolic<br />

NADP-dependent isocitrate dehydrogenase in the peroxisomes of rat<br />

liver cells: biochemical and immunocytochemical studies. J Histochem<br />

Cytochem. 2001;49:1123-1131.<br />

78. Wang F, Travins J, DeLaBarre B, et al. Targeted inhibition of mutant<br />

IDH2 in leukemia cells induces cellular differentiation. Science. 2013;<br />

340:622-626.<br />

79. Narahara K, Kimura S, Kikkawa K, et al. Probable assignment of soluble<br />

isocitrate dehydrogenase (IDH1) to 2q33.3. Hum Genet. 1985;71:<br />

37-40.<br />

80. Oh IU, Inazawa J, Kim YO, et al. Assignment of the human mitochondrial<br />

NADP()-specifıc isocitrate dehydrogenase (IDH2) gene to<br />

15q26.1 by in situ hybridization. Genomics. 1996;38:104-106.<br />

81. Sjöblom T, Jones S, Wood LD, et al. The consensus coding sequences of<br />

human breast and colorectal cancers. Science. 2006;314:268-274.<br />

82. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas.<br />

N Engl J Med. 2009;360:765-773.<br />

83. Kosmider O, Gelsi-Boyer V, Slama L, et al. Mutations of IDH1 and<br />

IDH2 genes in early and accelerated phases of myelodysplastic syndromes<br />

and MDS/myeloproliferative neoplasms. Leukemia. 2010;24:<br />

1094-1096.<br />

84. Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations<br />

identify novel molecular subsets within de novo cytogenetically normal<br />

acute myeloid leukemia: a Cancer and Leukemia Group B study.<br />

J Clin Oncol. 2010;28:2348-2355.<br />

85. Schaap FG, French PJ, Bovée JV. Mutations in the isocitrate dehydrogenase<br />

genes IDH1 and IDH2 in tumors. Adv Anat Pathol. 2013;<br />

20:32-38.<br />

86. Amary MF, Bacsi K, Maggiani F, et al. IDH1 and IDH2 mutations are<br />

frequent events in central chondrosarcoma and central and periosteal<br />

chondromas but not in other mesenchymal tumours. J Pathol. 2011;<br />

224:334-343.<br />

87. Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by<br />

sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;<br />

361:1058-1066.<br />

88. Schnittger S, Haferlach C, Ulke M, et al. IDH1 mutations are detected<br />

in 6.6% of 1414 AML patients and are associated with intermediate risk<br />

karyotype and unfavorable prognosis in adults younger than 60 years<br />

and unmutated NPM1 status. Blood. 2010;116:5486-5496.<br />

89. Patel KP, Ravandi F, Ma D, et al. Acute myeloid leukemia with IDH1 or<br />

IDH2 mutation: frequency and clinicopathologic features. Am J Clin<br />

Pathol. 2011;135:35-45.<br />

90. Chou WC, Lei WC, Ko BS, et al. The prognostic impact and stability of<br />

Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid<br />

leukemia. Leukemia. 2011;25:246-253.<br />

91. Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly<br />

inhibit IDH1 catalytic activity and induce HIF-1alpha. Science.<br />

2009;324:261-265.<br />

92. Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations<br />

produce 2-hydroxyglutarate. Nature. 2009;462:739-744.<br />

93. Luchman HA, Stechishin OD, Dang NH, et al. An in vivo patientderived<br />

model of endogenous IDH1-mutant glioma. Neuro Oncol.<br />

2012;14:184-191.<br />

94. Ward PS, Patel J, Wise DR, et al. The common feature of leukemiaassociated<br />

IDH1 and IDH2 mutations is a neomorphic enzyme activity<br />

converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell.<br />

2010;17:225-234.<br />

95. Welch JS, Ley TJ, Link DC, et al. The origin and evolution of mutations<br />

in acute myeloid leukemia. Cell. 2012;150:264-278.<br />

96. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2<br />

mutations result in a hypermethylation phenotype, disrupt TET2<br />

function, and impair hematopoietic differentiation. Cancer Cell. 2010;<br />

18:553-567.<br />

97. Hartmann C, Meyer J, Balss J, et al. Type and frequency of IDH1 and<br />

IDH2 mutations are related to astrocytic and oligodendroglial differentiation<br />

and age: a study of 1,010 diffuse gliomas. Acta Neuropathol.<br />

2009;118:469-474.<br />

98. Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation<br />

and results in a block to cell differentiation. Nature. 2012;<br />

483:474-478.<br />

99. Koivunen P, Lee S, Duncan CG, et al. Transformation by the (R)-<br />

enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature.<br />

2012;483:484-488.<br />

100. Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a<br />

competitive inhibitor of -ketoglutarate-dependent dioxygenases.<br />

Cancer Cell. 2011;19:17-30.<br />

101. Noushmehr H, Weisenberger DJ, Diefes K, et al. Identifıcation of a<br />

CpG island methylator phenotype that defınes a distinct subgroup of<br />

glioma. Cancer Cell. 2010;17:510-522.<br />

102. Gross S, Cairns RA, Minden MD, et al. Cancer-associated metabolite<br />

2-hydroxyglutarate accumulates in acute myelogenous leukemia with<br />

isocitrate dehydrogenase 1 and 2 mutations. J Exp Med. 2010;207:339-<br />

344.<br />

103. Fathi AT, Sadrzadeh H, Borger DR, et al. Prospective serial evaluation<br />

of 2-hydroxyglutarate, during treatment of newly diagnosed acute myeloid<br />

leukemia, to assess disease activity and therapeutic response.<br />

Blood. 2012;120:4649-4652.<br />

asco.org/edbook | 2015 ASCO EDUCATIONAL BOOK<br />

e655

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!