09.01.2013 Views

European Journal of Scientific Research - EuroJournals

European Journal of Scientific Research - EuroJournals

European Journal of Scientific Research - EuroJournals

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

445 Omubo-Pepple V. B, Opara F. E, Ogbonda C and Pekene D.B<br />

where<br />

∂<br />

i Γ<br />

∂t<br />

+ iδ<br />

+<br />

∑<br />

k ′′<br />

k1k2<br />

k3k<br />

4 ( t1<br />

, t 2 , t3<br />

, t 4 ; τ 1,<br />

τ 2 ) = ε k Γ k1k2<br />

k3k<br />

4 ( t1<br />

, t 2 , t3<br />

, t 4 ; τ 1 τ 2 ) +<br />

( t1<br />

− t 4 ) δk1<br />

k 4 Fk2k<br />

3 ( t 2 , t3<br />

; τ 1,<br />

τ 2 ) − iδ<br />

( t1<br />

− t3<br />

) δ k2k<br />

4 Fk4<br />

( t 2 , t 4 ; τ 1,<br />

τ 2 )<br />

V Ψ T a<br />

+ ( t ) b ( t ) b ( t ) a ( t<br />

+ ) a ( t<br />

+ ) a ( t<br />

+ ) b ( τ ) b ( τ ) Ψ<br />

k1k<br />

′′<br />

N<br />

{ }<br />

k ′′<br />

1<br />

1<br />

+<br />

+<br />

( t , t ; τ , τ ) = Ψ T a&<br />

( t ) a&<br />

& ( t ) b&<br />

& ( τ ) b&<br />

& ( τ )<br />

1<br />

k3<br />

2<br />

k3<br />

3<br />

k4<br />

{ Ψ }<br />

F<br />

k2k<br />

4<br />

2 3 1 2 N & k2<br />

2 k3<br />

3 1 2 N<br />

(8)<br />

Eq. (7) is rewritten as<br />

⎛ ∂<br />

⎜<br />

⎝ ∂t1<br />

⎞<br />

+ iε<br />

⎟ k Γ k k k k ( t1,<br />

t2<br />

, t3<br />

, t4<br />

; τ 1τ<br />

2 ) = δ ( t1<br />

−t<br />

4 ) δk<br />

1 2 3 4<br />

k11k<br />

4<br />

⎠<br />

Fk<br />

k ( t2<br />

, t3;<br />

τ 1τ<br />

2 ) −<br />

2 3<br />

−δ<br />

t −t<br />

δk<br />

F t , t ; τ τ<br />

(9)<br />

( 1 3 ) 1k1k<br />

3 k ( 2k4<br />

2 4 1 2 )<br />

V Ψ T a<br />

+ ( t ) b ( t ) a ( t<br />

+ + ) a ( t ) a ( t<br />

+ ) b(<br />

τ ) b ( τ ) b + ( τ )<br />

{ }<br />

−∑<br />

k ′′<br />

k′<br />

k′<br />

′ N k ′′ 1 1 k2<br />

2 k3<br />

3 k4<br />

4 1 1 2 ΨN<br />

The last term on right <strong>of</strong> eq. (9) vanishes unless τ2 < t1 < τ1, in which case b(t1) b+ (t1) = 1<br />

Laramore, (1971). Eq. (9) then takes the closed form<br />

⎛ ∂<br />

⎜<br />

⎝ ∂t1<br />

⎞<br />

+ iε<br />

⎟ k Γ k1k2k3k<br />

4<br />

⎠<br />

t1,<br />

t2<br />

, t3<br />

, t4<br />

; τ 1τ<br />

2 = δ t1<br />

−t<br />

−δ<br />

t −t<br />

δk<br />

F t , t ; τ τ<br />

with<br />

−i<br />

( 1 3 ) k1<br />

1 k3<br />

k k ( 2 3 2 4 1 2 )<br />

V ( t , t , t , t ; τ τ )<br />

∑<br />

k′<br />

′<br />

k ′ Γ 1k<br />

k′<br />

′ k2k<br />

4<br />

1<br />

( ) ( ) δk<br />

F ( t , t ; τ τ )<br />

2<br />

3<br />

4<br />

1<br />

2<br />

4<br />

4<br />

k11k<br />

4<br />

We next set up the equation <strong>of</strong> motion for the function F and obtain<br />

⎛ ∂<br />

⎜<br />

⎝ ∂t1<br />

⎞<br />

+ iε<br />

k ⎟ Fk1k2<br />

⎠<br />

( t1,<br />

t 2;<br />

τ 1 τ 2 ) = δ ( t1<br />

− T − 2)<br />

δ k1k<br />

2<br />

g ( τ 1,<br />

τ 2 ) −<br />

−i<br />

V F t , t ; τ τ<br />

∑<br />

k ′′<br />

k1k′<br />

′<br />

k ′′ k2<br />

( )<br />

+<br />

( , ) = Ψ T b(<br />

) b ( τ ) τ<br />

τ<br />

N<br />

1<br />

2<br />

1<br />

2<br />

{ 1 2 } N<br />

g τ Ψ<br />

(12)<br />

1<br />

2<br />

Finally, the equation <strong>of</strong> motion for g (τ1τ2) yields<br />

⎛ ∂<br />

⎜<br />

⎝ ∂ 1<br />

⎞<br />

+<br />

+ ε ⎟ ( τ 1,<br />

τ 2 ) = δ ( τ 1,<br />

τ 2 ) − ∑ k′<br />

k ′′ k ′′ k′<br />

( τ 1 τ 1 τ 1τ<br />

2 )<br />

⎠<br />

k1k′<br />

′<br />

F V i<br />

g iE<br />

t<br />

(13)<br />

Eqs. (10), (11) and (13) will determine the response function for our model. These equations<br />

take on a rather simple form if final state interactions are neglected. We then find<br />

Γ k ( 1,<br />

2 , 3,<br />

4;<br />

1,<br />

2 ) ( 1 4 ) ( 2 , 3;<br />

1,<br />

2 )<br />

1k2k3<br />

k t t t t τ τ = G<br />

4<br />

k1k<br />

t −t<br />

F t t tau tai<br />

4<br />

k2k<br />

−<br />

3<br />

−G<br />

t − t F t , t ; τ , τ<br />

(14)<br />

( 1 3 ) ( 2 4 1 2 )<br />

3<br />

k2k<br />

4<br />

( t t ; τ , τ ) G ( t −t<br />

)( τ , τ )<br />

k1k<br />

Fk1k2 2 , 4 1 2 k1k2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

k2k3<br />

2<br />

3<br />

2<br />

1<br />

2<br />

N<br />

+<br />

(7)<br />

(10)<br />

(11)<br />

= (15)<br />

−iEc<br />

( τ 1 , τ 2 )<br />

g ( τ1<br />

, τ 2 ) = θ ( τ1,<br />

τ 2 ) e<br />

(16)<br />

In these equations we have converted the differential equations (10), (11), (13) into the integral<br />

forms, and have put<br />

−iε<br />

k ( t1<br />

− t2<br />

)<br />

1<br />

G k ( ) ( )<br />

1k<br />

t 2 1 −t<br />

2 = θ t1<br />

−t<br />

2 δ k1k<br />

e<br />

(17)<br />

2<br />

where G k is the one-electron Green’s function, while 8 ( τ ) is the core-hole Green’s function. We<br />

1k2<br />

may then interpret Γ k1k2k<br />

3k<br />

as two-particle propagator in the presence <strong>of</strong> a core-hole. The second term<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!