09.01.2013 Views

European Journal of Scientific Research - EuroJournals

European Journal of Scientific Research - EuroJournals

European Journal of Scientific Research - EuroJournals

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Equation <strong>of</strong> Motion in Appearance Potential Spectra <strong>of</strong> Simple Metals 446<br />

on the right <strong>of</strong> equation (14) then corresponds to the inclusion <strong>of</strong> exchange <strong>of</strong> the two conduction<br />

electrons. If this exchange is neglected, we obtain<br />

Γ k1k2k<br />

3k<br />

4<br />

−iEct<br />

() t = θ () t e Gk1k<br />

4 ( t)<br />

Gk<br />

k ( t)<br />

2 3<br />

(18)<br />

Correspondingly, the response function becomes<br />

t =θ t<br />

2 −iEct<br />

M e<br />

*<br />

M k k K G t G t<br />

(19)<br />

G<br />

we obtain<br />

() () ( ) ( ) ( )<br />

S ∑ 1 2 k1k4<br />

k2k<br />

3<br />

k1k2<br />

> kF<br />

k3<br />

, k4<br />

> kF<br />

Taking the matrix elements to be constant, we get<br />

t =θ t<br />

2 −iEct<br />

M e G t G t<br />

(20)<br />

() () ( ) ( )<br />

S ∑ k1k4<br />

k2k3<br />

k1k2<br />

> kF<br />

k3<br />

, k4<br />

> kF<br />

If we substitute<br />

S<br />

k1k4<br />

() t θ () t<br />

() t = () t<br />

k1k<br />

−ε<br />

k t<br />

11<br />

= δ e<br />

(21)<br />

2 −iE<br />

−i(<br />

k + k t )<br />

ct<br />

ε1<br />

ε<br />

1 2<br />

θ M e e<br />

(22)<br />

∑<br />

k k > k<br />

1 2<br />

F<br />

The k -summation is performed by means <strong>of</strong> the transformation<br />

∑ ∫ ( ) ( )<br />

→<br />

1<br />

f k N ε f ε dε<br />

Ω k<br />

(23)<br />

where Ω is the normalization volume which is taken to be unity and N ( ε ) is the density <strong>of</strong> states at<br />

energy ε . The use <strong>of</strong> (23) then leads to<br />

S<br />

2 −iEct<br />

i(<br />

ε1<br />

+ ε 2 ) t<br />

() t = θ () t M e dε<br />

dε<br />

N ( ε ) N ( ε ) e<br />

∫<br />

ε1<br />

> ε F<br />

∫<br />

1<br />

ε1<br />

> ε F<br />

2<br />

1<br />

Transition Probability and X-ray Yield<br />

We take real part <strong>of</strong> the Fourier transform <strong>of</strong> (24) to obtain transition probability per unit time P (E):<br />

P<br />

=<br />

2<br />

i(<br />

E −Ec<br />

−ε1<br />

− ε 2 ) t<br />

( E)<br />

M R e dε<br />

dε<br />

N ( ε ) N ( ε ) d tθ<br />

( t)<br />

e<br />

M<br />

2<br />

∫<br />

∫<br />

dε<br />

1<br />

∫<br />

1<br />

ε1<br />

> ε F ε1<br />

> ε F<br />

∫ 2 1 2 ∫<br />

∞<br />

−∞<br />

i( E − Ec<br />

−ε<br />

1 − ε 2 + iδ<br />

) t<br />

( ε ) N ( ε ) lim Re d t e<br />

∫dε2N12∫ ∫<br />

δ → 0<br />

( ε ) ( ε ) πδ ( − −ε<br />

−ε<br />

) E E N<br />

2<br />

= ε1 ε 2 1 2<br />

c 1 2<br />

N d d M<br />

2<br />

( ε ) N ( E − E −ε<br />

)<br />

∞<br />

0<br />

= π M ∫ dε1<br />

N<br />

c<br />

(25)<br />

ε > ε f<br />

The limits <strong>of</strong> the ε -integration are ε = 0 at the Fermi level and c E E − = ε which is the<br />

difference between the energy <strong>of</strong> the incident electron E and the core-level binding energy E c<br />

The X-ray yield is proportional to P ( E)<br />

and so we obtain<br />

Y<br />

where ( E)<br />

E Ec<br />

( E)<br />

α dε<br />

N ( ε ) N ( E − E −ε<br />

)<br />

∫ −<br />

0<br />

c<br />

Y represents the X-ray yield<br />

The Appearance Potential Spectrum consists <strong>of</strong> the derivation <strong>of</strong> the X-ray yield with respect to<br />

the incident electron energy. So from (26) we get<br />

( ) α ∫ ε ( ε ) ( − −ε<br />

)<br />

− d E Ec<br />

A E d N N E Ec<br />

(27)<br />

dE 0<br />

2<br />

(24)<br />

(26)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!