26.10.2014 Aufrufe

Weak Convergence Methods for Nonlinear Partial Differential ...

Weak Convergence Methods for Nonlinear Partial Differential ...

Weak Convergence Methods for Nonlinear Partial Differential ...

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

We now prove an important necessary condition <strong>for</strong> weak lower semicontinuity.<br />

Theorem 2.40 1. If l ≥ f(u) <strong>for</strong> any sequence satisfying (H 0 ), then f is<br />

convex in the directions of Λ, i.e., t ↦→ f(a + tb) is convex ∀a ∈ R m , b ∈ Λ.<br />

2. If l = f(u) <strong>for</strong> any sequence satisfying (H 0 ), then f is affine in the directions<br />

of Λ.<br />

In the variational case this is called the “Legendre-Hadamard-” or “ellipticity<br />

condition”.<br />

Proof. Only the first statement is to be shown; the second is an immediate<br />

consequence of the first one.<br />

Let t 1 , t 2 ∈ R, y 1 = a + t 1 b, y 2 = a + t 2 b and µ ∈ (0, 1). b ∈ Λ implies ∃ξ ≠ 0<br />

such that ∑<br />

a ijk b j ξ k = 0 ∀i ∈ {1, ..., q}.<br />

j,k<br />

Let ψ : R → R be 1-periodic with<br />

{<br />

(1 − µ)(t 1 − t 2 ) <strong>for</strong> 0 ≤ t < µ<br />

ψ(t) =<br />

µ(t 2 − t 1 ) <strong>for</strong> µ ≤ t < 1.<br />

Define u (ν) ∈ L ∞ (Ω) (Q-periodic with Q = R(0, 1) n , R ∈ SO(n) such that<br />

Re 1 = ξ ) by |ξ|<br />

(<br />

u (ν) (x) = z + bψ ν ξ )<br />

|ξ| · x , z = µy 1 + (1 − µ)y 2 .<br />

Then u (ν) is highly oscillating and converges to<br />

Q<br />

Q<br />

w*- lim u (ν) = z<br />

because<br />

∫ ∫<br />

− u (ν) = z + b− ψ( ξ ∫ 1<br />

|ξ| · x) = z + ψ(t)dt<br />

Similarly,<br />

∫<br />

w*- lim f(u (ν) ) = − f<br />

Q<br />

0<br />

= z + µ(1 − µ)(t 1 − t 2 ) + (1 − µ)µ(t 2 − t 1 ) = z.<br />

( ( )) ξ<br />

z + bψ<br />

|ξ| · x =<br />

∫ 1<br />

0<br />

f(z + bψ(t))dt,<br />

30

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!