26.10.2014 Aufrufe

Weak Convergence Methods for Nonlinear Partial Differential ...

Weak Convergence Methods for Nonlinear Partial Differential ...

Weak Convergence Methods for Nonlinear Partial Differential ...

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

In our case x n+1 = t, b ≡ 0, a n+1 = 1, (a 1 , ...a n ) = ∇F.<br />

Since dx n+1<br />

= 1, x<br />

dt n+1 = 0 is x n+1 ≡ t. Also y ≡ y(0). The solution is given<br />

by<br />

y(t) = u(x(t), t)<br />

and in particular u is constant along characteristics.<br />

Example: Burgers equation u t + uu x = 0 (i.e.: a = (y, 1)). For initial values<br />

given, e.g., by<br />

⎧<br />

⎪⎨ 1, x < 0<br />

u(x, 0) = 1 − x, 0 ≤ x ≤ 1<br />

⎪⎩<br />

0, x ≥ 1<br />

there are charactersitic curves t ↦→ x(t) that cross <strong>for</strong> times t > 0 (cf. Fig. 3.1)<br />

and the solution is not defined unambiguously any longer. We there<strong>for</strong>e need a<br />

weaker notion of solution. 3.1.<br />

Figure 3.1: Crossing Characteristics.<br />

Motivated by our earlier studies of weak solution, <strong>for</strong> a solution u and a test<br />

function v ∈ Cc ∞ (R n × [0, ∞); R m ) we compute<br />

0 =<br />

∫ ∞<br />

∫ ∞<br />

= −<br />

0 −∞<br />

∫ ∞<br />

∫ ∞<br />

0<br />

(∂ t u + div x F(u)) · v dxdt<br />

−∞<br />

and make the following<br />

u · ∂ t v + F(u) : D x v dxdt −<br />

∫ ∞<br />

−∞<br />

u(x, 0) ·v(x, 0) dx<br />

} {{ }<br />

=g(x)<br />

Definition 3.1 u ∈ L ∞ (R n ×(0, ∞); R m ) is called and integral solution of (3.1)<br />

if<br />

∫ ∞<br />

∫ ∞<br />

0<br />

−∞<br />

<strong>for</strong> all v ∈ C ∞ c (R n × [0, ∞); R m ).<br />

u · ∂ t v + F(u) : D x v dxdt +<br />

56<br />

∫ ∞<br />

−∞<br />

g(x) v(x, 0) dx = 0

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!