19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

78 The Use of Scor<strong>in</strong>g Functions <strong>in</strong> Drug Discovery Applications<br />

31. P. C. Weber, J. J. Wendoloski, M. W. Pantoliano, and F. R. Salemme, J. Am. Chem. Soc., 114,<br />

3197 (1992). Crystallographic and Thermodynamic Comparison of Natural and Synthetic<br />

Ligands Bound to Streptavid<strong>in</strong>.<br />

32. A. R. Fersht, J.-P. Shi, J. Knill-Jones, D. M. Lowe, A. J. Wilk<strong>in</strong>son, D. M. Blow, P. Brick, P.<br />

Carter, M. M. Y. Waye, and G. W<strong>in</strong>ter, Nature (London), 314, 235 (1985). Hydrogen<br />

Bond<strong>in</strong>g and Biological Specificity Analysed by Prote<strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g.<br />

33. Y. W. Chen and A. R. Fersht, J. Mol. Biol., 234, 1158 (1993). Contribution of Buried<br />

Hydrogen Bonds to Prote<strong>in</strong> Stability—The Crystal Structure of Two Barnase Mutants.<br />

34. P. R. Connelly, R. A. Aldape, F. J. Bruzzese, S. P. Chambers, M. J. Fitzgibbon, M. A. Flem<strong>in</strong>g,<br />

S. Itoh, D. J. Liv<strong>in</strong>gston, M. A. Navia, J. A. Thomson, and K. P. Wilson, Proc. Natl. Acad.<br />

Sci. U.S.A., 91, 1964 (1994). Enthalpy of Hydrogen-Bond Formation <strong>in</strong> a Prote<strong>in</strong>–Ligand<br />

B<strong>in</strong>d<strong>in</strong>g Reaction.<br />

35. B. P. Morgan, J. M. Scholtz, M. D. Ball<strong>in</strong>ger, I. D. Zipk<strong>in</strong>, and P. A. Bartlett, J. Am. Chem.<br />

Soc., 113, 297 (1991). Differential B<strong>in</strong>d<strong>in</strong>g Energy: A Detailed Evaluation of the Influence of<br />

Hydrogen Bond<strong>in</strong>g and Hydrophobic Groups on the Inhibition of Thermolys<strong>in</strong> by Phosphorus-Conta<strong>in</strong><strong>in</strong>g<br />

Inhibitors.<br />

36. B. A. Shirley, P. Stanssens, U. Hahn, and C. N. Pace, Biochemistry, 31, 725 (1992).<br />

Contribution of Hydrogen Bond<strong>in</strong>g to the Conformational Stability of Ribonuclease T1.<br />

37. U. Obst, D. W. Banner, L. Weber, and F. Diederich, Chem. Biol., 4, 287 (1997). Molecular<br />

Recognition at the Thromb<strong>in</strong> Active Site: Structure-Based Design and Synthesis of Potent and<br />

Selective Thromb<strong>in</strong> Inhibitors and the X-Ray Crystal Structures of Two Thromb<strong>in</strong>-Inhibitor<br />

Complexes.<br />

38. H. Kub<strong>in</strong>yi, <strong>in</strong> Pharmacok<strong>in</strong>etic Optimization <strong>in</strong> Drug Research, B. Testa, H. van de<br />

Waterbeemd, G. Folkers, and R. Guy, Eds., Wiley-VCH, We<strong>in</strong>heim, 2001, pp. 513–524.<br />

Hydrogen Bond<strong>in</strong>g, the Last Mystery <strong>in</strong> Drug Design?<br />

39. H.-J. Schneider, T. Schiestel, and P. Zimmermann, J. Am. Chem. Soc., 114, 7698 (1992). The<br />

Incremental Approach to Noncovalent Interactions: Coulomb and van der Waals Effects <strong>in</strong><br />

Organic Ion Pairs.<br />

40. A. C. Tissot, S. Vuilleumier, and A. R. Fersht, Biochemistry, 35, 6786 (1996). Importance of<br />

Two Buried Salt Bridges <strong>in</strong> the Stability and Fold<strong>in</strong>g Pathway of Barnase.<br />

41. J. D. Dunitz, Science, 264, 670 (1994). The Entropic Cost of Bound Water <strong>in</strong> Crystals and<br />

Biomolecules.<br />

42. A. Ben-Naim, Hydrophobic Interactions, Plenum Press, New York, 1980.<br />

43. C. Tanford, The Hydrophobic Effect, Wiley, New York, 1980.<br />

44. C. Chothia, Nature (London), 254, 304 (1975). Structural Invariants <strong>in</strong> Prote<strong>in</strong> Fold<strong>in</strong>g.<br />

45. F. M. Richards, Annu. Rev. Biophys. Bioeng., 6, 151 (1977). Areas, <strong>Volume</strong>s, Pack<strong>in</strong>g, and<br />

Prote<strong>in</strong> Structure.<br />

46. K. A. Sharp, A. Nicholls, R. Friedman, and B. Honig, Biochemistry, 30, 9686 (1991).<br />

Extract<strong>in</strong>g Hydrophobic Free Energies From Experimental Data: Relationship to Prote<strong>in</strong><br />

Fold<strong>in</strong>g and Theoretical Models.<br />

47. H. Mack, T. Pfeiffer, W. Hornberger, H.-J. Boehm, and H. W. Hoeffken, J. Enzyme Inhib., 1,<br />

73 (1995). Design, Synthesis and Biological Activity of Novel Rigid Amid<strong>in</strong>o-Phenylalan<strong>in</strong>e<br />

Derivatives as Inhibitors of Thromb<strong>in</strong>.<br />

48. A. R. Khan, J. C. Parrish, M. E. Fraser, W. W. Smith, P. A. Bartlett, and M. N. G. James,<br />

Biochemistry, 37, 16841 (1998). Lower<strong>in</strong>g the Entropic Barrier for B<strong>in</strong>d<strong>in</strong>g Conformationally<br />

Flexible Inhibitors to Enzymes.<br />

49. M. S. Searle and D. H. Williams, J. Am. Chem. Soc., 114, 10690 (1992). The Cost of<br />

Conformational Order: Entropy Changes <strong>in</strong> Molecular Association.<br />

50. M. S. Searle, D. H. Williams, and U. Gerhard, J. Am. Chem. Soc., 114, 10697 (1992).<br />

Partition<strong>in</strong>g of Free Energy Contributions <strong>in</strong> the Estimation of B<strong>in</strong>d<strong>in</strong>g Constants: Residual<br />

Motions and Consequences for Amide–Amide Hydrogen Bond Strengths.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!